

MEMO 501

BSF - NOMINAL CAPACITIES AND

APPROXIMATE MINIMUM BEAM AND

COLUMN DIMENSIONS

PLANNING

Dato: 17.04.2013

Siste rev.: 23.05.2016

Dok. nr.: K4-10/501E

Sign.: sss

Kontr.:

Sign.: sss

ps

BSF - NOMINAL CAPACITIES AND APPROXIMATE MINIMUM BEAM AND COLUMN DIMENSIONS

NOMINAL CAPACITIES AND APPROXIMATE MINIMUM BEAM DIMENSIONS

Table A2-1: Nominal capacities and approximate minimum beam dimensions

UNIT	MAX VERTICAL ULTIMATE LIMIT LOAD	APPROXIMATE ABSOLUTE MINIMUM BEAM DIMENSION TO ALLOW FOR SPACE OF THE UNIT, SEE NOTE ²		
	ON UNIT, SEE NOTE ¹ [kN]	W×H [MM]	X [MM]	Y [MM]
BSF225	225	190×370	≈116mm	≈306mm
BSF300	300	190×420	≈116mm	≈349mm
BSF450	450	190×440	≈116mm	≈369mm
BSF700	700	310×500	≈239mm	≈424mm

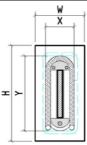


Figure A2-1: Illustration - evaluation of minimum beam dimension to allow for space of the unit

¹ The given values represent the capacity of the steel units calculated with use of the following National Determined Parameters:

NDPs in EN 1993-1-1	γмо	γм1	γм2
Value	1,1	1,1	1,25

NDPs in EN 1992-1-1	Υc	γs	α _{cc}	α_{ct}
Value	1,5	1,15	0.85	0.85

² Capacity of the beam will limit the allowable load on the unit. The standard suspension reinforcement will not fit into a beam with the minimum dimension. A final evaluation of beam dimensions, reinforcement and capacity shall be done by qualified engineer in each case. Appropriate reinforcement in the beam end may be found by following the guidelines in the memos. A spreadsheet for help in these evaluations can be downloaded for free use from: www.invisibleconnections.no.

The absolute minimum beam dimension to allow for space of the unit is found as:

 $W=X+2\times\emptyset$ strirrup+2×Concrete cover. Where; $X=\emptyset$ Half round steel in front +2× \emptyset anchoring bar in front

H= Y+2xØ_{strirrup}+2xConcrete cover.

Where; Y= $\emptyset_{anchoring \ bar \ in \ front}$ + $\emptyset_{Half \ round \ steel \ in \ front}$ /2+ h_{knife} +Clearance+ $\emptyset_{Half \ round \ steel \ at \ back}$ /2+ $\emptyset_{anchoring \ bar \ at \ back}$ (Note: The shape of the half round steel on the BSF700 unit is optimized around the knife. Thus, the formula will somewhat differ)

Assumed:

Concrete cover: 20mm

■ BSF225: Ø stirrup=10mm
■ BSF300/450/700: Ø stirrup=12mm

APPROXIMATE MINIMUM COLUMN DIMENSIONS

Table A2-2: Approximate minimum column dimensions

UNIT	Z	APPROXIMATE ABSOLUTE MINIMUM COLUMN WIDTH TO ALLOW FOR SPACE OF THE UNIT, SEE NOTE ³ W	
	[MM]	[MM]	
BSF225	100	230	
BSF300	100	230	
BSF450	140	290	
BSF700	150	300	

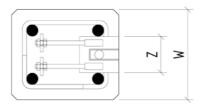


Figure A2-2: Illustration - minimum column width to allow for space of the unit

The minimum column width (W) to allow for space of the unit is found as:

 $W=Z+2\times Ø_{strirrup} +2\times Ø_{main}+2\times Concrete cover.$

Assumed:

Concrete cover: 20mm
 Ø stirrup: 10mm
 BSF225/300: Ø main=25mm
 BSF450/700: Ø main=32mm

³ The capacity of the column itself is not evaluated. The given values are only informative, as the size of the main reinforcement, stirrups and concrete cover will vary.

REVISION HISTORY		
Date:	Description:	
17.04.2013	First Edition (for ETA)	
Not dated	Updated before ETA. Updated text in footnotes, among other included a table of NDP's.	
19.09.2013	Increased font on references to footnotes. Included revision date and signature.	
05.11.2013	Updated – included comments from external review. Included X,Y and Z values.	
30.04.2014	Recommended minimum beam dimension for utilization of the unit removed.	
26.06.2014	Values for BSF700 changed due to change of half round steel. Formula for Y updated.	
27.02.2015	Included a nut on the front side of the steel plate anchoring the threaded bars. (To ensure	
	correct position of the plate when casting the concrete).	
23.05.2016	New template	