

SLOTTED INSERTS

FOR PRE-CAST CONCRETE PANEL CONNECTIONS

PERFORMANCE REPORTS

TEST REPORT NO. 1 LOAD TESTS ON PSA SLOTTED INSERTS

September, 1993

NOTICE

This publication is intended for the use of professional personnel, competent to evaluate the significance and limitations of its contents and who will accept responsibility for the application of the material it contains. Peto MacCallum Ltd. and Paton Steenson Associates Inc. disclaim any and all responsibility for the application of the stated principles or for the accuracy of the information contained herein.

September, 1993

LOAD TESTS ON PSA SLOTTED INSERTS TEST REPORT NO. 1

INTRODUCTION

The purpose of this test program is to establish the ultimate pull-out capacity of the various inserts developed by Paton Steenson Associates Inc., known as PSA Inserts, for use in precast concrete panel applications.

TEST PANEL

A concrete test panel was constructed into which several different PSA inserts were cast. The details of the test panel are shown on drawing no. 1001, included in Appendix A. This panel was manufactured at the Tri-Krete Plant in Toronto, Ontario as part of a normal days production. Load tests were conducted on the inserts when the test panel was twenty eight days old. The average concrete strength, as determined by concrete test cylinders, was 5249 psi at 14 days and 6279 psi at 28 days. The test panel was not prestressed but was reinforced for handling purposes by a nominal layer of welded wire fabric. No additional reinforcing steel was provided and the wire fabric did not affect the anchorage of the insert in any way. The concrete was cured in a normal manner (not accelerated). Details of the concrete quality control data are included in Appendix A.

TEST METHOD

The test load, in all cases, was applied to the inserts through their normal connection devices using a 30 ton hydraulic ram and hand operated pump. A load cell with a digital readout gauge was used to obtain an accurate direct load measurement. Recent calibration data for the load cell is included in Appendix A.

Figures 1 and 2 illustrate the conventional test arrangement used. A high strength bolt in the load transfer bracket was attached to the heavy duty nut built-into in the insert. In all cases, the load was applied when the nut was located in the center of the insert. All inserts were tested for ultimate pull-out capacity.

PSA Test Report No. 1 September. 1993 Page 2

A visual inspection of the pattern of failure cracking was made throughout the tests. The mode of failure was determined, photographed and recorded.

TEST PROGRAM

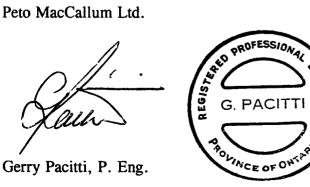
Inserts were both 4 1/2" and 6" long and either 2 1/2", 3 1/2" or 4 1/2" deep. Heavy duty square nuts are contained within the inserts and a 3/4" high strength bolt, located at the center of each insert, was used for these tests.

All inserts were located away from the edges and corners of the panel as shown on drawing no. 1001, in order to determine the true unreinforced capacity of these inserts.

TEST RESULTS

A table of test results is given in Appendix A.

DISCUSSION


- 1. In the case of the 2 1/2" deep inserts, the mode of failure was a typical concrete failure cone extending to the full depth of the insert. The average failure load was 13,475 lbs.
- 2. In the case of the 3 1/2" deep inserts, the mode of failure for two tests was a typical concrete failure cone extending to the full depth of the anchors. The other two tests, produced a typical mechanical failure of the insert lips along the slot.
- 3. In the case of the 4 1/2" deep inserts, the mode of failure was typically a concrete failure cone type, extending to the full depth of the anchors, except for test No. 9 which cracked the panel due to improper support. In all cases the concrete failure was initiated by the ductile yielding of the insert legs. The average failure load was 21,566 lbs.

CONCLUSIONS AND RECOMMENDATIONS

- 1. The recommended design ultimate capacity of these inserts is governed by the strength of the concrete failure cone which is a function of the embedded depth of the insert and its anchors when applicable.
- When used in minimum 5,000 psi concrete with appropriate edge distances, the 2. recommended design ultimate pull-out capacities of these inserts are as follows:

INSERT TYPE	ANCHORAGE DEPTH	AVERAGE FAILURE LOAD	RECOMMENDED DESIGN ULT. CAPACITY
4525	2 1/2"	13,475 lb.	12,000 lb.
6025	2 1/2"	13,475 lb.	12,000 lb.
4535	3 1/2"	18,850 lb.	16,000 lb.
6035	3 1/2"	18,850 lb.	16,000 lb.
4545	4 1/2"	21,566 lb.	20,000 lb.
6045	4 1/2"	21,566 lb.	20,000 lb.

Peto MacCallum Ltd.

September 31, 1993

APPENDIX A

- 1. Table of Test Results.
- 2. Load Cell Calibration Report.
- 3. Concrete Cylinder Test Report.
- 4. Photographs Figs. 1 through 6 incl.
- 5. Test Set Up Fig. 7.
- 6. Drawing No. 1001 Test Panels.
- 7. Data Sheet for PSA Inserts.

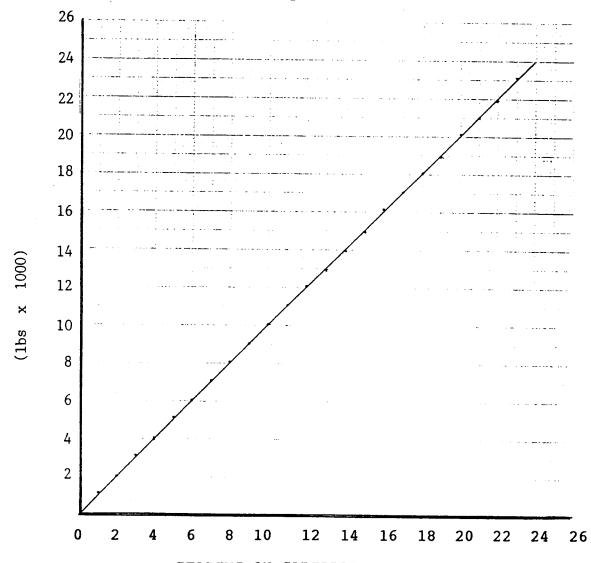
TEST RESULTS

PSA SLOTTED INSERTS - TEST REPORT NO. 1

INSERT TYPE	TEST NUMBER	INSERT LOCATION	EXTRA REINF.	BOLT LOCATION	FAILURE LOAD (lbs)	REMARKS							
	2 1/2" INSERTS (Rated - 12 Kips Ultimate)												
6025	1	Internal	None	Center	12,500	Typ.concrete cone Insert Intact							
6025	3	Internal	None	Center	14,400	Typ. concrete cone Insert Intact							
4525	2	Internal	None	Center	12,600	Typ. concrete cone Insert Intact							
4525	4	Internal	None	Center	14,400	Typ. concrete cone Insert Intact							
	3 1/2" INSERTS (Rated - 16 Kips Ultimate)												
6035	5	Internal	None	Center	18,800	Typ. concrete cone Insert wings bent							
6035	7	Internal	None	Center	18,800	Insert lips failed							
4535	6	Internal	None	Center	18,900	Insert lips failed							
4535	8	Internal	None	Center	18,900	Typ. concrete cone Insert wings bent							
		4 1/2" INSE	RTS (Rated	- 20 Kips Uli	timate)								
6045	9	Internal	None	Center	19,900*	Cracked test panel							
6045	11	Internal	None	Center	23,200	Test bolt failed							
4545	10	Internal	None	Center	21,600	Typ. concrete cone Insert wings bent							
4545	12	Internal	None	Center	19,900	Typ. concrete cone Insert wings bent							

^{*} Disregard this test result (cracked panel)

CALIBRATION CHART


For

 STRAINSERT UNIVERSAL FLAT LOAD CELL MODEL FL25U(C) S/N 08908-2

Coupled with

DORIC TRANSDUCER INDICATOR S/N 400236

READING ON LOAD CELL GAUGE

READING ON CALIBRATED REFERENCE GAUGE

(lbs x 1000)

CONCRETE CYLINDER COMPRESSIVE STRENGTH TEST REPORT

Job Code:	8021		Project No.:		Laboratory Job: 2634						
Cylinder No.	Date Cast	Date Received in Lab	Date Tested	Curing	Density (kg / m²)	Specified 28 Day Strength (MPa)	7 Day Strength (MPa)	28 Day Strength (MPa)	Day Strength (MPa)		
A	21JUL93	26JUL93	28JUL93	LAB	189	5000	4394				
В	21JUL93	26Jர்ட93	04AUG93	LAB	190	5000		14 DAY	5249		
С	21JUL93	26JUL93	18AUG93	LAB	190	5000		6279			
	<u> </u>										

Plant:

Representing:

Time Cylinders Cast:

Air Temperature (°C):

Contractor:

N/A

Project:

PSA

Location on Structure:

N/A

Concrete Supplier: Tri-Krete

F. Bertolo Cylinders Cast By:

11:00 Time Mixer Charged:

Specified Slump (mm):

N/R

see below Temp. of Concrete (°C):

Specified Air (%):

5.0

Water Added on the Job (litres):

Plastic

Nom. Size of Agg. (mm):

Type of Mould Used:

Type of Admixture:

REMARKS:

MBVR Rheobuild

see below

Initial 24 Hour Curing Temp. (°C):

None

Nominal size of aggregate = 3/8 ins. Measured Slump = 3.3 ins.

Air Temp. $(F^{\circ}) = 75$

Temp of Concrete $(F^{\circ}) = 70$

Measured Air (%):

By What Authority: N/A

Load No.: N/R

Maximum:

Truck No.: N/R

Ordered 28 Day Strength (MPa): see specified

Tri-Krete

5.6

Measured Slump (mm): see below

11:15

Minimum: N/A N/A

see below

All strengths are in psi. 3 All densities are in 1b/ft

We hereby certify testing in accordance with CAN 3-A23. 2-M90 for that portion of the test performed by this company

DISTRIBUTION:

2 Tri-Krete Attn: Mr. E. Romanin

1 Paton, Steenson & Assoc. Attn: Mr. Don Paton, P.Eng.

PHOTOGRAPHS

Fig. 1 Test Panel - Test Apparatus

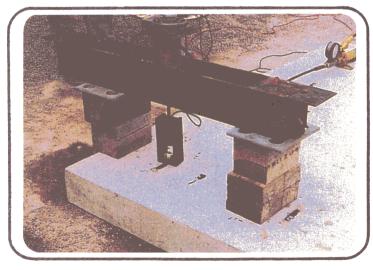


Fig. 2 Test Set Up - Test No. 1

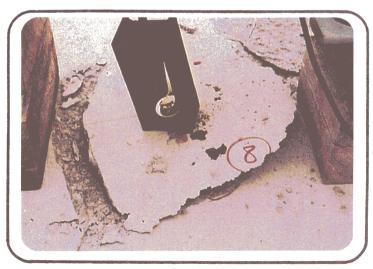


Fig. 3 4 1/2" x 3 1/2" Insert - 18,900 lbs.

Typical concrete cone failure.




Fig. 4 4 1/2" x 2 1/2" Insert - 14,400 lbs. Typical concrete cone failure.

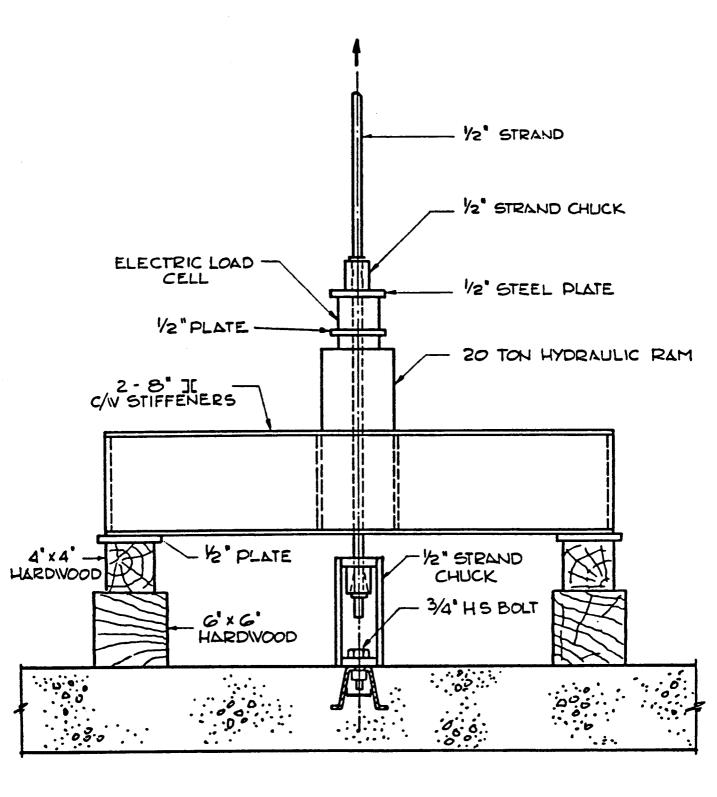


Fig. 5 4 1/2" x 2 1/2" Insert - 14,400 lbs.

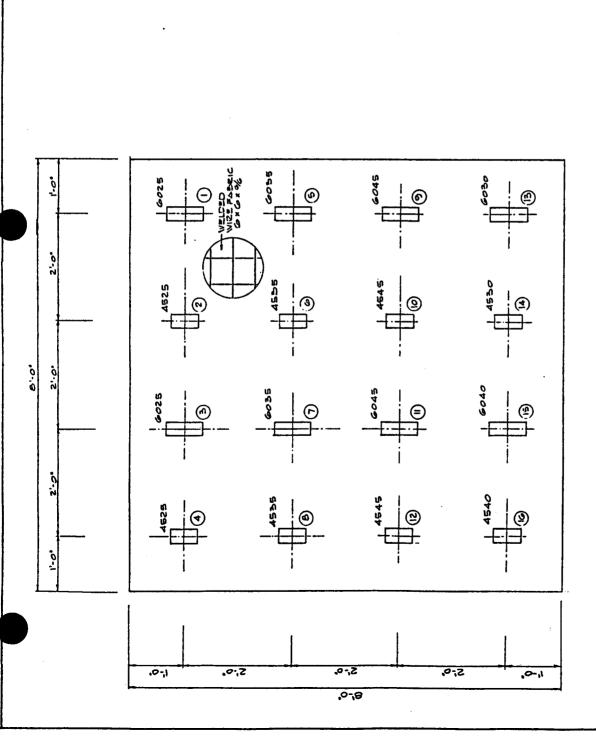

Concrete cone extends to base of insert

Fig. 6 6" x 3 1/2" Insert - Lips deformed at 18,800 lbs.

TEST SET-UP FOR PULLOUT TESTS FIG. 7

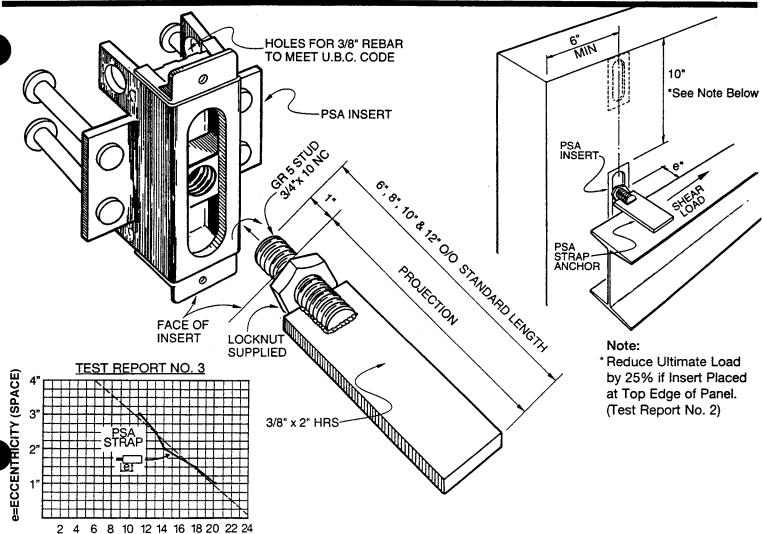
N O	-						:												AT Pe. AN	
DESCRIPTION	N O -																		SETE R	
SESC	ANEL	4.2 ×	×2.7	×2%.	×ツル	,×9,12°	×31/2°	2/2×3	× 4 1/2	.×41/2	× 41/2°	.×4,/5.	× 3°	`∢ ≯.	×4.	*×4*				
	0	છ	4	4 2	0	4	<u>e</u>	4%	9	4%	Ö	41/2	9	41/2	છ	472	Ĺ		2 AT. II	l
INSERT	TEST	6025	525	4523	635	1335	203B	15 3 S	2045	1548	5045	545	00 30	1530	6040	1540			CONCRESTINE OF TRESTED TO ROUTE	
Ħ		H	21 4	1	10	9	7	0	6	ō	J.II.	7 21	୭ାହା	14 4	9 51	91		!	ZI SE EE	

	h -	ļ.
	CONCRETE STRENGTH. AT TIME OF TEST - 6279 psi	TEATER AT TOTABLE TO THE
	STREN TIE	2710
	ETE S F. TES	1
2010	CONCR	TEATE
i	· ii	•

	CHECK	Q Z
	ISSUE REVAL DESCRIPTION	PATON BTEENSON ABSOCIATES INC
	REVNO	J
	ISSUE	M
	ATE	1

1	
1	ş

PSA TEST PANEL NO. 1


PXCX & WWF

DATE SEPT. 93	NENISION	1001
DRAWN BY	CHECKED BY	DRAWING Ke.
DETAIL No.	E)

d # S	SIABU	<u>ŏ</u>
AS NAVUG	AS GENERAL	DRAWING No.

PSA STRAP ANCHORS

FEATURES:

• Ultimate Pull-out Capacity

ULTIMATE SHEAR LOAD IN KIPS

Strap Anchors Develop full Ultimate Capacity of the insert

Insert Type	<u>Depth</u>	<u>Length</u>	Ult. Pull-Out Capacity
4525	2 1/2"	4 1/2"	12,000 lbs
6025		6"	
4535	3 1/2"	4 1/2"	16,000 lbs
6035		6"	
4545	4 1/2"	4 1/2"	20,000 lbs
6045		6"	

Ultimate Pull-Out Capacity Based on Tests Performed in 5,000 psi Normal Weight Concrete (Refer to PSA Test Report No.1)

Ultimate Shear Capacity

20,350 lbs. at 1" Eccentricity (See Graph Above)
Ult. Shear Capacity based on Tests Performed in 6,000 psi
Normal Weight Concrete (Refer to PSA Test Report No. 3)

- Standard Strap Anchor Lengths 6", 8", 10" & 12" Out/Out
- Available Finishes Epoxy or Hot Dipped
 Galvanized. (Stainless Steel available on Special Order)
- Material High Strength weldable grade HRS Steel
- Lock Nut Ensures Positive Connection in Both Directions

in Canada

ACCESSORIES, INC.

7550 North Linder Avenue Skokie, Illinois 60077 USA 705/675-1560 Fax: 708/675-0083

PATON STEENSON ASSOC. INC.

10 Royal Orchard Blvd. P.O. Box #53009 Thornhill, Ontario L3T 7R9 905/889-7357 Fax: 905/889-7648 **DISCLAIMER:** The use of PSA inserts should be approved by a qualified professional engineer or architect.

TEST REPORT NO. 2 LOAD TESTS ON PSA SLOTTED INSERTS

Inserts Located at Edge of Panel September, 1993

NOTICE

This publication is intended for the use of professional personnel, competent to evaluate the significance and limitations of its contents and who will accept responsibility for the application of the material it contains. Peto MacCallum Ltd. and Paton Steenson Associates Inc. disclaim any and all responsibility for the application of the stated principles or for the accuracy of the information contained herein.

September, 1993

LOAD TESTS ON PSA SLOTTED INSERTS TEST REPORT NO. 2

Introduction

The purpose of this limited test program is to determine how the ultimate pull-out capacity of various PSA Slotted Inserts is affected when the inserts are placed at the edge of a precast concrete panel without any additional steel reinforcement.

TEST PANEL

A concrete test panel was constructed into which several PSA inserts were cast. The details of the test panel are shown on Drawing No.1002, included in Appendix A. This panel was manufactured at the Tri-Krete plant in Toronto as part of a normal days production. Load tests were conducted on the inserts when the panel was twenty eight days old. The average concrete strength, as determined by concrete test cylinders, was 5017 psi at 14 days and 5351 psi at 28 days. The test panel was not prestressed but was reinforced for handling purposes with a nominal layer of welded wire fabric. The inserts were placed at, and perpendicular to the edges of the panel. No additional reinforcing steel was placed in or around these inserts. The concrete was cured in a normal manner (not accelerated). Details of the concrete quality control data are included in Appendix A.

TEST METHOD

The test load, in all cases, was applied to the inserts through their normal connection devices using a 30 ton hydraulic ram and hand operated pump. A load cell with a digital readout gauge was used to obtain an accurate direct load measurement. Recent calibration data for the load cell is included in Appendix A.

Figure 6 illustrates the conventional test arrangement used. A high strength bolt in the load transfer bracket was attached to the heavy duty nut built-into the insert. In all cases the load was applied when the nut was located in the center of the insert. All inserts were tested for ultimate pull-out capacity.

A visual inspection of the pattern of failure cracking was made throughout the tests. The mode of failure was determined, photographed and recorded.

PSA Test Report No. 2 September, 1993 Page 2

TEST PROGRAM

Inserts were both 4 1/2" and 6" long and either 2 1/2", 3 1/2" or 4 1/2" deep. Heavy duty square nuts were contained within the inserts and a 3/4" high strength bolt, located at the center of each insert, was used for these tests.

All of these inserts were located along the sides of the panel, away from the corners, but at, and perpendicular to the edges of the panel as shown on Drawing No.1002. No additional reinforcing steel was provided around or through the inserts so that the true unreinforced pull-out capacity of these edge-placed inserts could be determined.

TEST RESULTS

A table of test results is given in Appendix A.

DISCUSSION

- 1. In all cases, the mode of failure was a typical concrete failure cone extending to the full depth of the insert (and/or anchor) except that the diameter of the cone was somewhat reduced since the inserts were placed at the edge of the panel.
- 2. All inserts remained intact within the concrete cone. None of these inserts yielded.
- 3. The pull-out capacity of these edge-located inserts was reduced because of the reduced size of the failure cone. For the 2 1/2" inserts, the capacity was reduced about 20%, for the 3 1/2" inserts, about 25% and for the 4 1/2" inserts, about 27% below the capacities achieved in Test Report No. 1. where recommended edge distances were maintained.

CONCLUSIONS AND RECOMMENDATIONS

- 1. The capacity of these inserts is governed by the strength of the concrete failure cone which in turn is a function of the embedded depth of the insert, the tensile strength of the insert and the diameter of the failure cone.
- 2. The diameter of the failure cone is substantially reduced when inserts are placed at the edge of a panel. Other test programs may show that the full capacity of these inserts can be developed if additional reinforcing steel is used to compensate for the reduced size of the shear cone.
- 3. We do not recommend installing the inserts at edge distances less than recommended. These tests were conducted only to illustrate the consequences of not providing adequate edge distances or additional reinforcing steel to strengthen the smaller shear cone.
- 4. When compared to the results from Test Report No.1, it can be seen that the ultimate pull-out capacities of the same inserts are reduced by 20% to 27% when the inserts are located at the edge of a panel as follows:

INSERT DEPTH	AVE.TEST RESULTS INSERTS NOT LOCATED AT EDGE OF PANEL (TEST REPORT NO.1)	AVE.TEST RESULTS INSERTS LOCATED AT EDGE OF PANEL (TEST REPORT NO.2)
2 1/2"	13,475 lbs.	10,850 lbs.
3 1/2"	18,850 lbs.	14,150 lbs.
4 1/2"	21,566 lbs.	15,800 lbs.

Peto MacCallum Ltd.

Gerry Pacitti, P. Eng.

September 31, 1993

APPENDIX A

- 1. Table of Test Results.
- 2. Load Cell Calibration Report.
- 3. Concrete Cylinder Test Report.
- 4. Photographs Figs. 1 through 5 incl.
- 5. Test Set Up Fig. 6.
- 6. Drawing No. 1002 Test Panels.
- 7. Data Sheet for PSA Inserts

TEST RESULTS

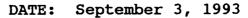
PSA INSERTS - TEST REPORT NO. 2

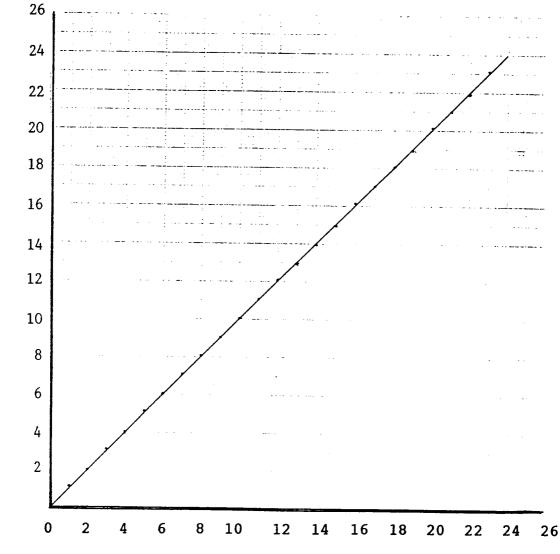
ALL INSERTS LOCATED AT EDGE OF PANEL

INSERT TYPE	TEST NUMBER	INSERT TYPE	EXTRA REINF.	BOLT LOCATION	FAILURE LOAD (lbs)	REMARKS							
-	2 1/2" INSERTS - (Rated 12 Kips Ultimate)												
6025	1	Perp to edge	None	Center	12,200	Concrete failed Insert intact							
4525	2	Perp to edge	None	Center	11,500	Concrete failed Insert intact							
	3 1/2" INSERTS - (Rated 16 Kips Ultimate)												
6035	12	Perp to edge	None	Center	14,500	Concrete failed Insert intact							
4535	5	Perp to edge	None	Center	13,800	Concrete failed Insert intact							
	4 1/2" INSERTS - (Rated 20 Kips Ultimate)												
6045	6045 14		None	Center	17,500	Concrete failed Insert intact							
4545	15	Perp to edge	None	Center	14,100	Concrete failed Insert intact							

CALIBRATION CHART

For


• STRAINSERT UNIVERSAL FLAT LOAD CELL MODEL FL25U(C) S/N 08908-2


Coupled with

READING ON LOAD CELL GAUGE

(1bs

DORIC TRANSDUCER INDICATOR S/N 400236

READING ON CALIBRATED REFERENCE GAUGE

(1bs x 1000)

CONCRETE CYLINDER COMPRESSIVE STRENGTH TEST REPORT

Job Code:	8021	Project No.:			Laboratory Job: 2635				
Cylinder No.	Date Cast	Date Received : in Lab	Date Tested	Curing	Density (kg / m³)	Specified 28 Day Strength (MPa)	7 Day Strength (MPa)	28 Day Strength (MPa)	Day Strength (MPa)
A	22ЈՄL93	26JUL93	29JUL93	LAB	183	5000	4713		
В	22JUL93	26JUL93	05AUG93	LAB	183	5000		14 DAY	5017
С	22JUL93	26JUL93	19AUG93	LAB	183	5000		5351	
		· .							

Contractor:

N/A

Project:

PSA

Location on Structure:

N/A

Concrete Supplier: Tri-Krete Plant:

Cylinders Cast By: F. Bertolo

Representing: Tri-Krete

Time Mixer Charged: 10:30 Time Cylinders Cast: 10:40

Specified Slump (mm): N/R

Measured Slump (mm): see below

Temp. of Concrete (°C):

Specified Air (%): 5.0 Measured Air (%): 5.0

Air Temperature (°C):

Water Added on the Job (litres): None

By What Authority: N/A

Type of Mould Used: Plastic

N/R Load No.:

Nom. Size of Agg. (mm):

Truck No.: N/R

Type of Admixture: MBVR RHEOBUILD

Initial 24 Hour Curing Temp. (°C):

N/A Maximum:

N/A Minimum:

REMARKS:

Nominal size of aggregate = 3/8 inch

Measured slump = 3.0 ins.

see below

Temperature of concrete $(F^{\circ}) = 70$

Air temp. $(F^{\circ}) = 75$

All strengths are in psi. All densities are in lb/ft³

Ordered 28 Day Strength (MPa): see specified

see below

We hereby certify testing in accordance with CAN 3-A23. 2-M90 for that portion of the test performed by this company

DISTRIBUTION:

- 2 Tri-Krete Mr. E. Romanin
- 1 Paton, Steenson & Associates

Attn: Mr. Don Paton, P. Eng.

ction Control

PHOTOGRAPHS

Fig. 1 6" x 2 1/2" Insert at edge - 10,200 lbs. Typical reduced concrete cone failure.

Fig. 3 4 1/2" x 3 1/2" Insert at edge, 13,800 lbs. Cone extends to base of anchors.

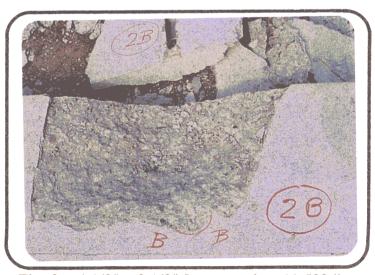


Fig. 2 4 1/2" x 2 1/2" Insert at edge, 11,500 lbs. Typical concrete cone failure.

Cone extends to base of anchors.

Fig. 4 4 1/2" x 4 1/2" Insert at edge, 14,100 lbs. Cone extends to base of anchors.

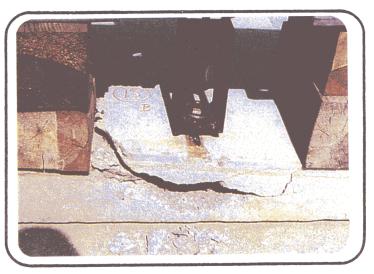
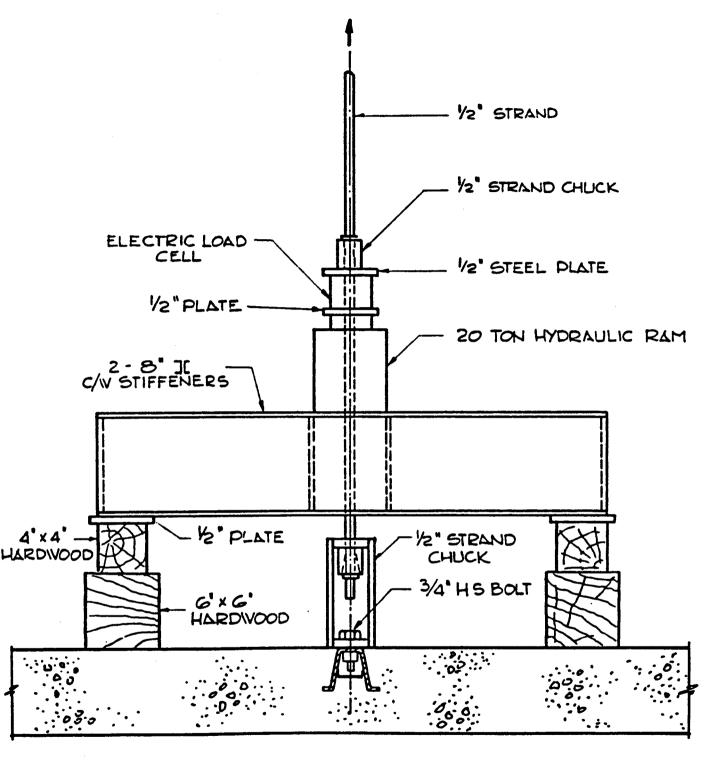
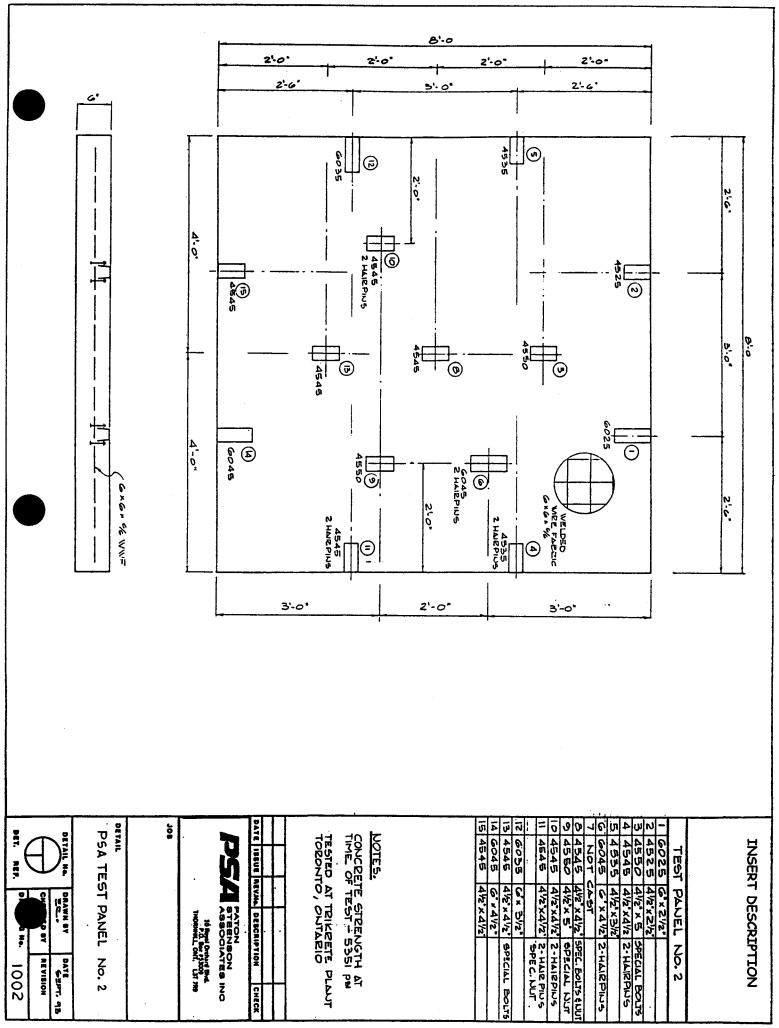
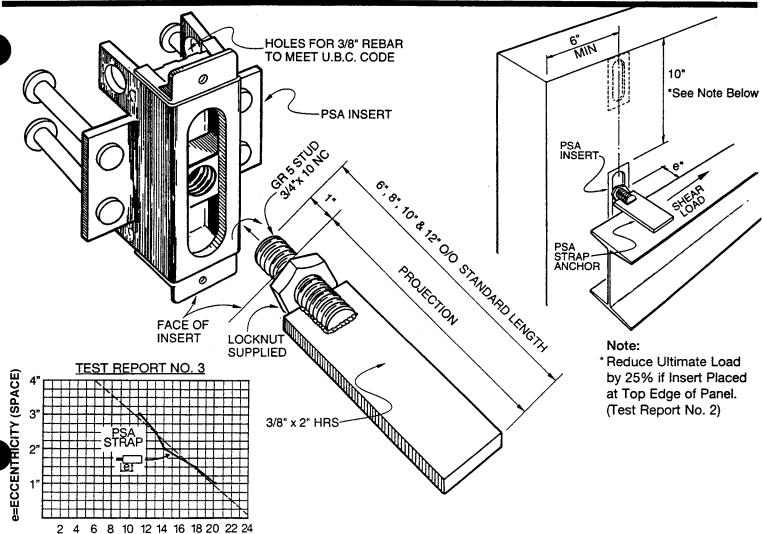




Fig. 5 4 1/2" x 4 1/2" Insert at edge. 14,100 lbs. Typical concrete failure. Insert intact.



TEST SET-UP
FOR PULLOUT TESTS
FIG. 6

PSA STRAP ANCHORS

FEATURES:

• Ultimate Pull-out Capacity

ULTIMATE SHEAR LOAD IN KIPS

Strap Anchors Develop full Ultimate Capacity of the insert

Insert Type	<u>Depth</u>	<u>Length</u>	Ult. Pull-Out Capacity
4525	2 1/2"	4 1/2"	12,000 lbs
6025		6"	
4535	3 1/2"	4 1/2"	16,000 lbs
6035		6"	
4545	4 1/2"	4 1/2"	20,000 lbs
6045		6"	

Ultimate Pull-Out Capacity Based on Tests Performed in 5,000 psi Normal Weight Concrete (Refer to PSA Test Report No.1)

Ultimate Shear Capacity

20,350 lbs. at 1" Eccentricity (See Graph Above)
Ult. Shear Capacity based on Tests Performed in 6,000 psi
Normal Weight Concrete (Refer to PSA Test Report No. 3)

- Standard Strap Anchor Lengths 6", 8", 10" & 12" Out/Out
- Available Finishes Epoxy or Hot Dipped
 Galvanized. (Stainless Steel available on Special Order)
- Material High Strength weldable grade HRS Steel
- Lock Nut Ensures Positive Connection in Both Directions

in Canada

ACCESSORIES, INC.

7550 North Linder Avenue Skokie, Illinois 60077 USA 705/675-1560 Fax: 708/675-0083

PATON STEENSON ASSOC. INC.

10 Royal Orchard Blvd. P.O. Box #53009 Thornhill, Ontario L3T 7R9 905/889-7357 Fax: 905/889-7648 **DISCLAIMER:** The use of PSA inserts should be approved by a qualified professional engineer or architect.

10 ROYAL ORCHARD BOULEVARD • P.O. BOX 53009 • THORNHILL, ONTARIO L3T 7R9
TEL 905-889-7357 • FAX 905-889-7648

TEST REPORT NO. 3

SHEAR TESTS ON

PSA SLOTTED INSERTS

At Metromont Materials Plant

MAY, 1994

ACKNOWLEDGEMENT

Special thanks to HARRY GLEICH AND JIM JUSTUS of Metromont Materials Corp. for their help and advice in making this test program possible.

NOTICE

This publication is intended for the use of professional personnel, competent to evaluate the significance and limitations of its contents and who will accept responsibility for the application of the material it contains. JVI Accessories Inc., Metromont Materials Corp., and Paton Steenson Associates Inc. disclaim any and all responsibility for the application of the stated principles or for the accuracy of the information contained herein.

10 ROYAL ORCHARD BOULEVARD • P.O. BOX 53009 • THORNHILL, ONTARIO L3T 7R9
TEL 905-889-7357 • FAX 905-889-7648

March, 1994

SHEAR TESTS ON PSA SLOTTED INSERTS TEST REPORT NO. 3

INTRODUCTION

The purpose of this test program was to determine the lateral shear capacity of welded strap anchor connections using PSA slotted inserts and strap anchors. The shear force was applied at various eccentricities from 1" to 3" away from the face of the insert so as to simulate actual construction conditions. The "fixed-end" effect of the weld on the strap anchor was taken into consideration.

TEST PANEL

The details of the test panel are shown on Drawing No. 1003 included in Appendix A. The panel was manufactured in the Metromont Materials plant in Greenville, S.C., as part of a normal days production. Inserts were "plunged" into the wet concrete in order to simulate actual production proceedures for this type of prestressed concrete wall panel. The concrete was cured using normal accelerated curing proceedures. The load test was made on January 11, 1994 when the panel was 7 days old. The average concrete strength at time of testing was 6,200 psi. as determined by two concrete test cylinders. An 8" x 8" steel box beam, welded to embedded weld plates served as a reaction beam to resist the design load of 30 kips at 4" eccentricity.

TEST METHOD

The test load was applied to the connection through a special test beam using a 20 ton hydrailic ram and hand operated pump. Recent calibration data for the pump and pressure gauge is included in Appendix A. The test beam was specially fabricated to rigidly restrain the ends of the strap anchors so as to simulate the fixed-end effect of a 2" weld on the strap anchor. This is the minimum length of weld usually used with this type of connection. Each strap anchor was tested individually. In all cases the jam nut was just finger tight (not torqued down). The eccentricity of the applied load was measured from the face of the insert to the bottom of the test beam to simulate the usual clearance between the back of a panel and the edge of the roof beam, all as shown on on Drawing No. 1003 in Appendix A. Tests were made at five different eccentricities - 1", 1 1/2", 2", 2 1/2" and 3".

PSA Test Report No. 3 March, 1994 Page 2 **TEST RESULTS**

A Table of Test Results is given in Appendix A.

DISCUSSION

- **(1)** The test beam effectively transmitted the axial load along the centre line of the jack. The levelling screws on the test beam maintained the alignment of the jack such that no secondary moments were introduced.
- **(2)** The test beam effectively simulated the fixed-end condition of the welded strap anchor as illustrated in Figs. 2 and 4.
- (3) Initial failure in all cases resulted from the ductile yielding of the steel strap as the load translated. Final failure occurred as the lips of the insert failed and the nut rotated out of the insert. Minor concrete spalling occurred as shown in Fig. 3.
- **(4)** It would appear that the shear capacity of these connections could be increased by using a wider (stiffer) steel strap, 2 1/2" or 3" wide to delay initial yielding. However it may be more cost effective for unusual loading conditions to weld extension plates onto the structural frame at connection points in order to reduce the eccentricity and utilize standard strap anchors. (5) In no case was there any bending or yielding of the high strength studs in the strap
- anchor. The exposed length of the stud was minimal and it would appear that the stud was effectively fixed-ended in both the insert and the strap anchor.

- CONCLUSIONS AND RECOMMENDATIONS
- The 2" x 3/8" standard steel strap anchor provides adequate shear resistance for normal **(1)** loading conditions. Although a wider strap (2 1/2" or 3") would increase shear resistance it is **(2)**
 - recommended that for unusual loading conditions, an extension plate be welded onto the structural frame at connection points so that standard strap anchors can be used. The shear load is then transferred to the strap anchors at the eccentricity of the extension plate rather than the structural frame.

TEST RESULTS

PSA INSERTS - TEST REPORT NO.3

LATERAL SHEAR TESTS ON STRAP ANCHORS

METROMONT MATERIALS PLANT - GREENVILLE, SC.

INSERT TYPE	TEST NUMBER	INSERT DESC.	LOAD ECCENT.	GAUGE READING	FAILURE LOAD (lbs)	REMARKS
6025	2	6" x 2 1/2"	1"	4300 psi.	20,253	Concrete spalled Insert lips failed
6025	1	6" x 2 1/2"	1 1/2"	3800 psi.	17,900	Nut rotated out Insert lips failed
6025	3	6" x 2 1/2"	2*	3000 psi.	14,200	Insert lips failed Min. spalling (washer)
6025	4	6" x 2 1/2"	2 1/2"	2800 psi.	13,200	Same
6025	5	6" x 2 1/2"	3"	2400 psi	11,300	Same

NOTES

- (1) Ram area = 4.71 sq. in.
- (2) Refer to Drawing No. 1004 in Appendix A for a graph if Test Results.

PSA Test Report No. 3 March, 1994 Page 3

(3) The test results of standard PSA Strap Anchors when tested in lateral shear in 6000 psi. concrete are summarized in the following table:

INSERT TYPE	STRAP TYPE	LOAD ECCENTRICITY	FAILURE LOAD
6" x 2 1/2"	3/8" X 2"	1".	20,253 lb.
6" x 2 1/2"	3/8" X 2"	1 1/2"	17,900 lb.
6" x 2 1/2"	3/8" X 2"	2"	14,200 lb.
6" x 2 1/2"	3/8" X 2"	2 1/2"	13,200 lb.
6" x 2 1/2"	3/8" X 2"	3"	11,300 lb.

NOTE:

Please refer to Drawing No. 1004 in Appendix A for a graphical presentation of these test results.

PATON STEENSON ASSOCIATES INC

Don Paton, P. Eng.

March 31, 1994

APPENDIX A

- 1. Table of Test Results.
- 2. Calibration Report.
- 3. Photographs Figs. 1 through 4 incl.
- 4. Drawing No. 1003 Test Set Up Test Panel
- 5. Drawing No. 1004 Graph of Test ResultsStrap Anchor Assembly
- 6. Drawing No. 1005 PSA Strap Anchors
- 7. Tensile Test on Strap Anchors
- 8. Data Sheet for PSA Strap Anchors
- 9. Data Sheet for PSA Inserts.

TEST RESULTS

PSA INSERTS - TEST REPORT NO.3

LATERAL SHEAR TESTS ON STRAP ANCHORS

METROMONT MATERIALS PLANT - GREENVILLE, SC.

INSERT TYPE	TEST NUMBER	INSERT DESC.	LOAD ECCENT.	GAUGE READING	FAILURE LOAD (lbs)	REMARKS
6025	2	6" x 2 1/2"	1"	4300 psi.	20,253	Concrete spalled Insert lips failed
6025	1	6" x 2 1/2"	1 1/2"	3800 psi.	17,900	Nut rotated out Insert lips failed
6025	3	6" x 2 1/2"	2"	3000 psi.	14,200	Insert lips failed Min. spalling (washer)
6025	4	6" x 2 1/2"	2 1/2"	2800 psi.	13,200	Same
6025	5	6" x 2 1/2"	3"	2400 psi	11,300	Same

NOTES

- (1) Ram area = 4.71 sq. in.
- (2) Refer to Drawing No. 1004 in Appendix A for a graph if Test Results.

Calibration Test Certificate

Customer: Paton Steenson Associates

Gauge Description: Enerpac Gauge 0-10,000 psi, serial G93-496

Standard Used: Mansfield & Green, Type #R-50

Dead Weight Serial #: 1315 Dead Weight Accuracy: 0.1%

**Note: Instruments have been tested against a dead weight tester

serial # as above, which is traceable to the National Research Council in Ottawa, as per their report # 722.0329, dated August 18,1989.

Hydraquip Sales & Service Ltd. certifies that the below item(s)

have been tested to comply in every way with the requirements of the above purchase order.

Master Test Gauge Above Gauge

D.W.

1000 PSI 1000 PSI

3000 3000

5000 5000

7000 7025 9000 9025

Date Tested: Dec 6, 1993

Technician: Pat Mahon

Phone 416-461-3573 Fax 416-461-2979
Out of town callers 1-800-463-4168

PHOTOGRAPHS

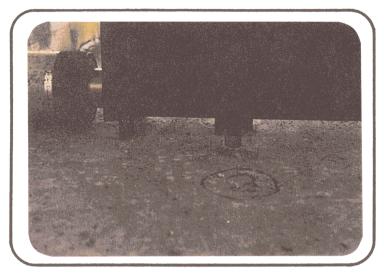


Fig. 1 Jack & Test Beam (Test # 2) e = 1" 20,253 lbs.

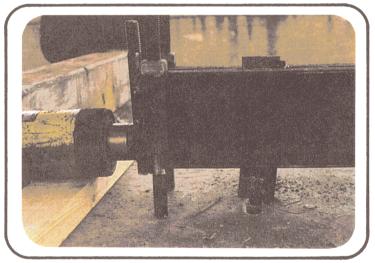


Fig. 2 Jack & Test Beam (Test # 4) $e = 2 \frac{1}{2}$ " 13,200 lbs.

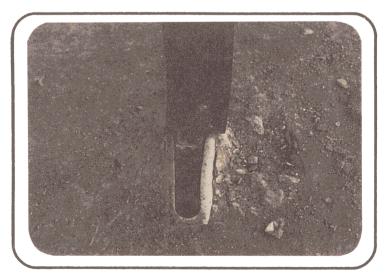


Fig. 3 Typical failure (Test # 1) $e = 1 \frac{1}{2}$ " 17,900 lbs.

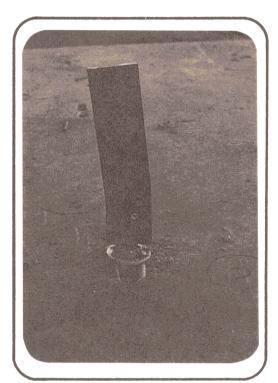
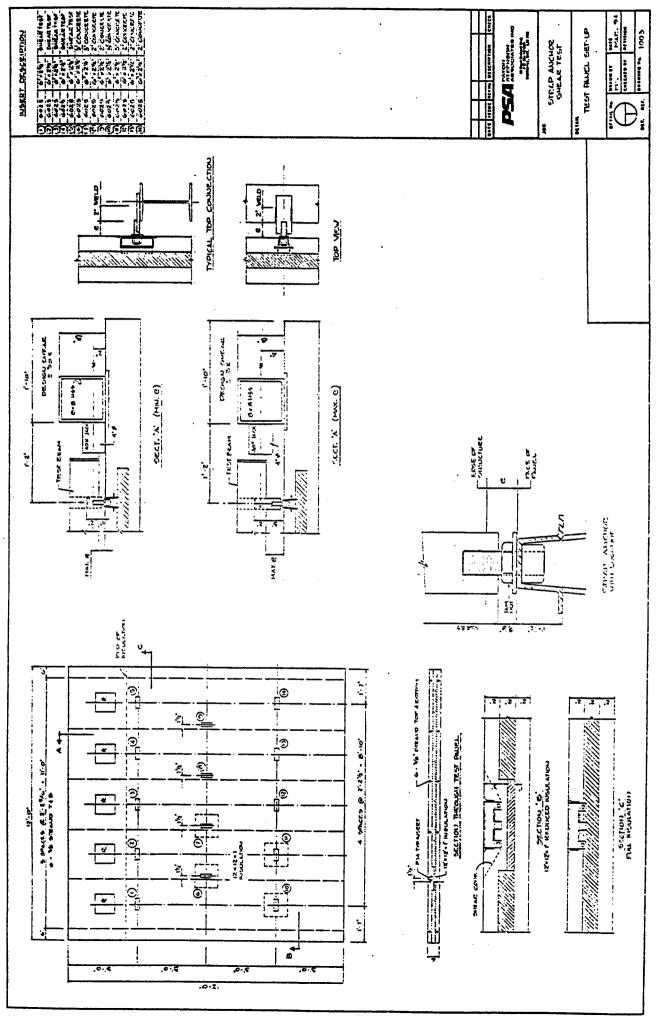
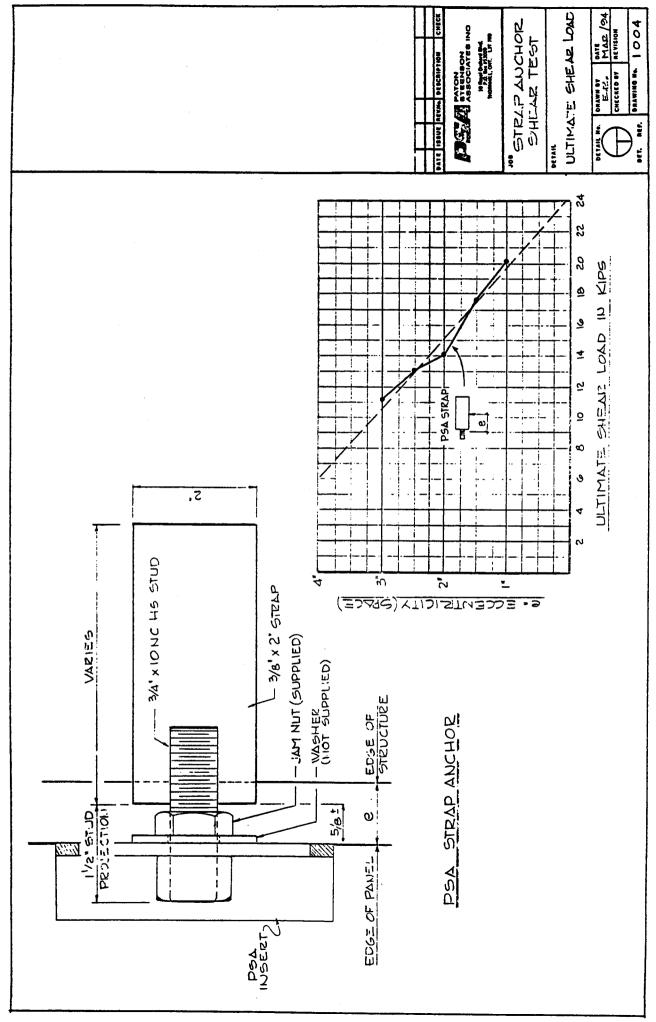
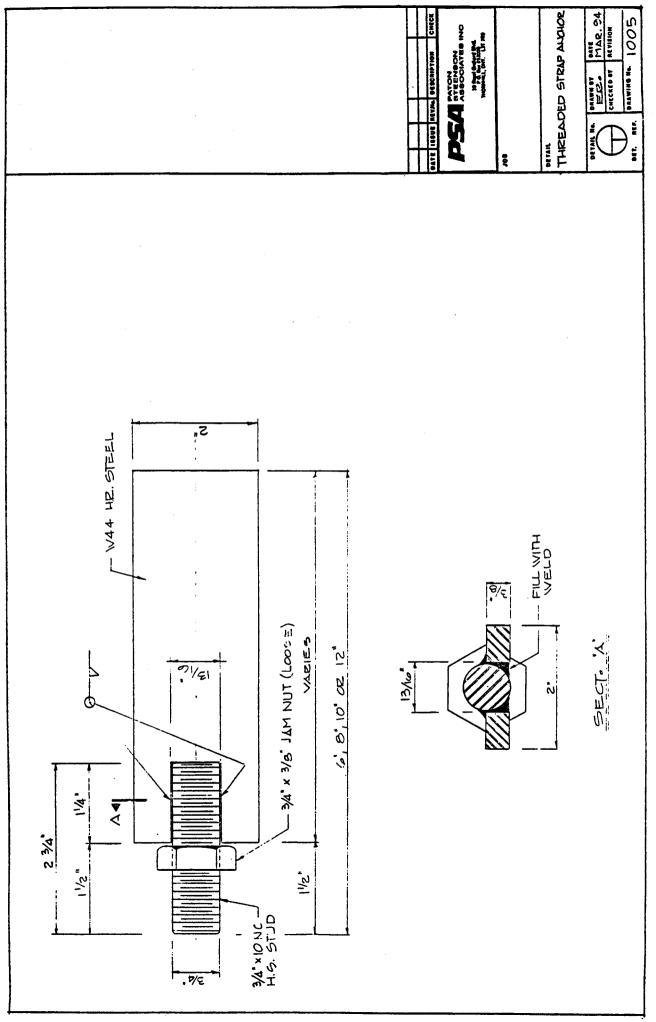





Fig. 4 Effective fixed-end of strap. (Test # 3) e = 2" 14,200 lbs.

TELEPHONE 519-621-8191 FAX 519-621-7700

Chemical Analysis of

Malleable, Meehanite, Ductile

and Cast Irons; Plain.

Alloyed and Stainless Steels;

Zinc and Aluminum Alloys;

Brass and Bronze;

The Galt Testing Laboratories Limited

CHEMISTS and METALLURGISTS

MAILING:

P.O. BOX 367

SHIPPING: 15 HIGH RIDGE CRT. CAMBRIDGE, ONTARIO N1R 7L3 ESTABLISHED 1929

Mechanical Testing: Tension, Hardness, Bend. Notched Bar Impact. Metallography; Sand Testing; Reports

Coal Coke Limestone Slags Etc. CAMBRIDGE, ONTARIO N1R 5V5

Paton Steenson Associates Inc.

10 Royal Orchard Blvd.

P.O. Box #53009 Thornhill, Ontario L3T 7R9

Attention: Don Paton

Customer P.O.: 1077

Laboratory Sample I.D. #: 40561

Report Date: April 12, 1994

4 Strap Anchors

Four strap anchors were placed in a direct tensile load and pulled to failure. Specimens were tested as received.

In all cases, the specimen fractured outside of the weld in the threaded area. The following results were obtained:

48,300 lbf, 45,700 lbf, 44,400 lbf, and 44,100 lbf.

Test were conducted in accordance with The Galt Testing Laboratories' in house testing procedures.

Samples returned at customer's request and expense; otherwise samples retained one year from date of test.

This report relates only to the specimen or specimens tested and does not guarantee the bulk material, etc. to be equal quality. The testing and inspection of instruments, materials, and other articles is only undertaken by the Galt Testing Laboratories Limited subject to the express stipulation that no liability or responsibility of any kind or however arising shall attach to the Galt Testing Laboratories Limited, or any employee of the Galt Testing Laboratories Limited, in respect of any loss, injury or damage arising directly or indirectly out of, or in connection with any such inspection or testing or any failure or omission in regard thereto.

The Galt-Testing Laboratories

Bill Bartlett Senior Technician

Graham Payne P. Eng.

Per VI ayn

Chemical Analysis of

Malleable, Meehanite, Ductile

and Cast Irons; Plain,

Alloyed and Stainless Steels:

Zinc and Aluminum Alloys;

Brass and Bronze:

Coal, Coke, Limestone Slags, Etc.

FAX 519-621-7700

The Galt Testing Laboratories Limited

CHEMISTS and METALLURGISTS

MAILING: P.O. BOX 367 CAMBRIDGE, ONTARIO N1R 5V5

SHIPPING: 15 HIGH RIDGE CRT. CAMBRIDGE, ONTARIO N1R 7L3

ESTABLISHED 1929

Mechanical Testing Tension, Hardness, Bend Notched Bar Impact Metallography Sand Testing Reports

Paton Steenson Associates Inc. 10 Royal Orchard Blvd. P.O. Box #53009 Thornhill, Ontario L3T 7R9 Attention: Don Paton

Laboratory Sample I.D. #: 71189

Report Date: July 25, 1994

Strap Anchor Sample, Marked #2 by Galt Testing Laboratories

One PSA Strap Anchor was placed in a direct tensile load and pulled to failure using a crosshead rate of 0.100"/min.

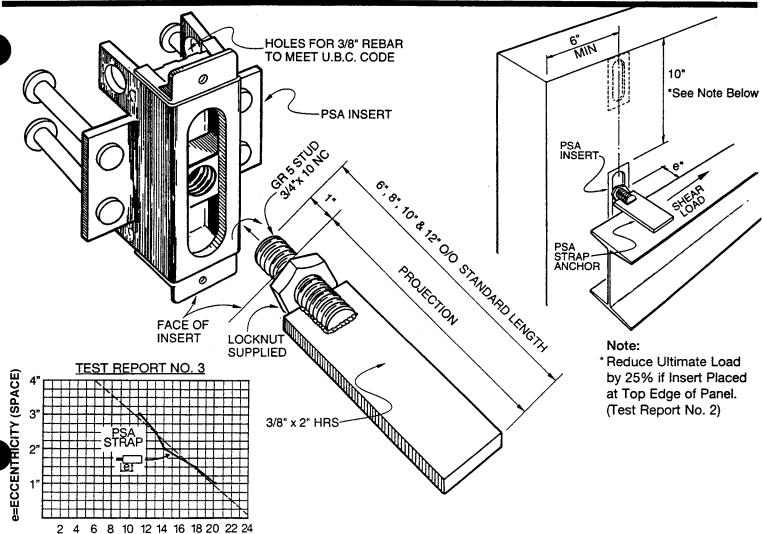
Specimen fractured in the threads of the 3/4 x 10 stud at a maximum load of 40,200 lbf.

Specimen was tested as received.

Test conducted in accordance with the Galt Testing Laboratories' in house testing procedures.

Samples returned at customer's request and expense; otherwise samples retained one year from date of test.

This report relates only to the specimen or specimens tested and does not guarantee the bulk material, etc. to be equal quality. The testing and inspection of instruments, materials, and other articles is only undertaken by the Galt Testing Laboratories Limited subject to the express stipulation that no liability or responsibility of any kind or however arising shall attach to the Galt Testing Laboratories Limited, or any employee of the Galt Testing Laboratories Limited, in respect of any loss, injury or damage arising directly or indirectly out of, or in connection with any such inspection or testing or any failure or omission in regard thereto


Gall Testing Laboratories

Bill Bartlett Senior Technician

Roger Trefzger

PSA STRAP ANCHORS

FEATURES:

• Ultimate Pull-out Capacity

ULTIMATE SHEAR LOAD IN KIPS

Strap Anchors Develop full Ultimate Capacity of the insert

Insert Type	<u>Depth</u>	<u>Length</u>	Ult. Pull-Out Capacity
4525	2 1/2"	4 1/2"	12,000 lbs
6025		6"	
4535	3 1/2"	4 1/2"	16,000 lbs
6035		6"	
4545	4 1/2"	4 1/2"	20,000 lbs
6045		6"	

Ultimate Pull-Out Capacity Based on Tests Performed in 5,000 psi Normal Weight Concrete (Refer to PSA Test Report No.1)

Ultimate Shear Capacity

20,350 lbs. at 1" Eccentricity (See Graph Above)
Ult. Shear Capacity based on Tests Performed in 6,000 psi
Normal Weight Concrete (Refer to PSA Test Report No. 3)

- Standard Strap Anchor Lengths 6", 8", 10" & 12" Out/Out
- Available Finishes Epoxy or Hot Dipped
 Galvanized. (Stainless Steel available on Special Order)
- Material High Strength weldable grade HRS Steel
- Lock Nut Ensures Positive Connection in Both Directions

in Canada

ACCESSORIES, INC.

7550 North Linder Avenue Skokie, Illinois 60077 USA 705/675-1560 Fax: 708/675-0083

PATON STEENSON ASSOC. INC.

10 Royal Orchard Blvd. P.O. Box #53009 Thornhill, Ontario L3T 7R9 905/889-7357 Fax: 905/889-7648 **DISCLAIMER:** The use of PSA inserts should be approved by a qualified professional engineer or architect.

10 ROYAL ORCHARD BOULEVARD • P.O. BOX 53009 • THORNHILL, ONTARIO L3T 7R9
TEL 905-889-7357 • FAX 905-889-7648

TEST REPORT NO. 4

PULL-OUT TESTS ON

PSA SLOTTED INSERTS

At Metromont Materials Plant

MARCH, 1994

ACKNOWLEDGEMENT

Special thanks to HARRY GLEICH AND JIM JUSTUS of Metromont Materials Corp. for their help and advice in making this test program possible.

NOTICE

This publication is intended for the use of professional personnel, competent to evaluate the significance and limitations of its contents and who will accept responsibility for the application of the material it contains. JVI Accessories Inc., Metromont Materials Corp., and Paton Steenson Associates Inc. disclaim any and all responsibility for the application of the stated principles or for the accuracy of the information contained herein.

10 ROYAL ORCHARD BOULEVARD • P.O. BOX 53009 • THORNHILL, ONTARIO L3T 7R9
TEL 905-889-7357 • FAX 905-889-7648

March, 1994

LOAD TESTS ON PSA SLOTTED INSERTS TEST REPORT NO. 4

INTRODUCTION

The purpose of this test program was to establish the ultimate pull-out capacity of PSA Inserts in the 2" concrete wythe of a 6" prestressed concrete sandwich panel. The effect of increasing the concrete thickness to 3" (by reducing the insulation thickness directly underneath some inserts), was also studied.

TEST PANEL

The details of the test panel are shown on Drawing No. 1003 included in Appendix A. The panel was manufactured in the Metromont Materials plant in Greenville S.C. as part of a normal days production of 6" prestressed concrete sandwich panels (2/2/2 sandwich). Inserts were "plunged" into the top surface of the wet concrete in order to simulate actual production procedures. The top wythe of concrete was only 2" thick but was thickened to 3" in a 12" x 12" area directly underneath some inserts, by reducing the thickness of insulation by 1". For other inserts, the 2" concrete thickness was maintained and legs of these inserts (which are 2 1/2" deep) were pushed 1/2" into the insulation. The panel was prestressed to a standard P/A of 225 psi. The panel was cured using normal accelerated curing procedures. The load tests were made on January 11, 1994 when the panel was 7 days old. The average strength of concrete at time of testing was approximately 6200 psi. as determined by two concrete test cylinders.

TEST METHOD

The test load in all cases was applied to the inserts through their normal connection devices using a 20 ton hydraulic ram and hand operated pump. Recent calibration data for the pump and pressure gauge is included in Appendix A.

Figure 1 illustrates the conventional test arrangement used. A high strength bolt in the load transfer bracket was attached to the heavy duty nut built into the insert. In all cases, the load was applied with the bolt located in the centre of the insert. All inserts were tested for ultimate pull-out capacity. A visual inspection of the pattern of failure cracking was made throughout the tests. The mode of failure was determined, photographed and recorded.

PSA Test Report No. 4 March, 1994 Page 2

TEST PROGRAM

All inserts were 6" long and 2 1/2" deep (Type 6025). Four inserts were placed near a prestressing strand. Two of these inserts were in 2" of concrete and two were in 3" of concrete.

Five other inserts were placed at least 12" clear of any prestressing strands. Three of these inserts were in 2" of concrete and two were in 3" of concrete.

All inserts were located away from the edges and corners of the panel as shown on Drawing No. 1003 in order to determine the true unreinforced capacity of these inserts.

TEST RESULTS

A table of Test Results is given in Appendix A.

DISCUSSION

- 1. For inserts in 3" of concrete, the mode of failure was a typical concrete failure cone extending to the full depth of the insert. A large failure cone as shown in Fig. 4, was developed even though the 3" concrete thickness was localized in a 12" x 12" area under the insert. The average failure load was 14,000 lbs. for inserts clear of a prestressing strand, and 16,500 lbs for inserts adjacent to a prestressing strand. Fig. 3 illustrates the large failure cone developed when a prestressing strand was located adjacent to an insert.
- 2. For inserts in 2" of concrete, the mode of failure was a typical concrete failure cone extending to the full 2" depth of the concrete as shown in Fig. 2. The failure cone was somewhat smaller than for other inserts in 3" of concrete. The average failure load was 9,930 lbs. for inserts clear of a prestressing strand, and 12,950 lbs. for inserts adjacent to a prestressing strand.

CONCLUSIONS AND RECOMMENDATIONS

1. The tests on inserts located adjacent to a prestressing strand were included for general information only. It is <u>not</u> recommended that such test results be used for design purposes.

PSA Test Report No. 4 March, 1994 Page 3

- 2. The test results for inserts in 3" of concrete compare closely with the results of previous tests on these inserts. (Refer to PSA Test Report No. 1). It is recommended that an appropriate β factor be applied to these test results for ultimate design purposes.
- 3. It is <u>not</u> recommended that PSA inserts be used in a 2" wythe of concrete unless it is thickened to at least 3" in the vicinity of the insert.
- 4. When tested in minimum 6,000 psi. prestressed concrete with appropriate edge distances, the average ultimate pull-out capacitities of these inserts were as follows:

INSERT TYPE	ANCHORAGE DEPTH	LOCATION	AV. FAILURE LOAD IN 2" CONCRETE	AV. FAILURE LOAD IN 3" CONCRETE
6025	2 1/2"	Clear of strand	9,950 lbs.	14,000 lbs.
6025	2 1/2"	Adjacent to strand	12,950 lbs.	16,500 lbs.

PATON STEENSON ASSOCIATES INC

W. D. Paton P. Eng.

March 31, 1994

PSA Test Report No. 4 March, 1994 Page 4

APPENDIX A

- 1. Table of Test Results.
- 2. Calibration Report.
- 3. Photographs Figs. 1 through 4 incl.
- 4. Fig. 5 Test Setup.
- 5. Drawing No. 1003 Test Panel
- 6. Data Sheet for PSA Inserts.

TEST RESULTS

PSA INSERTS - TEST REPORT NO. 4

LOAD TESTS AT METROMONT MATERIALS PLANT

INSERT TYPE	TEST NUMBER	INSERT DESC.	CONC. THICK- NESS	GAUGE READING (psi.)	FAILURE LOAD (Lbs.)	REMARKS
		NO	O STRANDS 1	NEAR INSERT	•	
6025	10	6" X 2 1/2"	3"	2850 psi	13,400	Honeycomb at insert. Concrete failure
6025	11	6" x 2 1/2"	3"	3100 psi	14,600	Same comments.
	-	N	O STRANDS I	NEAR INSERT		A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
6025	12	6" X 2 1/2"	2"	2600 psi	12,300	Cracked test panel. Test discontinued.
6025	14	6" x 2 1/2"	2"	1800 psi	8,500	Concrete failure.
6025	13	6" 2 1/2"	2"	9,000 psi	9,000	Same comments
		ON	E STRAND B	ESIDE INSER	T	
6025	9	6" X 2 1/2"	2*	2300 PSI	10,800	Insert lips failed. Concrete failed
6025	8	6" x 2 1/2"	2"	3200 psi	15,100	Same comments
		ON	E STRAND B	ESIDE INSER	T	
6025	7	6" X 2 1/2"	3"	3500 PSI	16,500	Large concrete cone. Insert yielded
6025	6	6" x 2 1/2"	3"	3500 psi	16,500	Same comments

NOTE: Ram area = 4.71 sq. in.

Calibration Test Certificate

Customer: Paton Steenson Associates

Gauge Description: Enerpac Gauge 0-10,000 psi, serial G93-496

Standard Used: Mansfield & Green, Type #R-50

Dead Weight Serial #: 1315

Dead Weight Accuracy: 0.1%

**Note: Instruments have been tested against a dead weight tester serial # as above, which is traceable to the National Research Council in Ottawa, as per their report # 722.0329, dated August 18,1989.

Hydraquip Sales & Service Ltd. certifies that the below item(s) have been tested to comply in every way with the requirements of the above purchase order.

Master Test Gauge Above Gauge

D.W.

1000 PSI 1000 PSI

3000 3000

5000 5000

7000 7025

9000 9025

Date Tested: Dec 6, 1993

Technician: Pat Mahon

Phone 416-461-3573 Fax 416-461-2979
Out of town callers 1-800-463-4168

PHOTOGRAPHS

Fig. 1 Test Panel & Set-Up

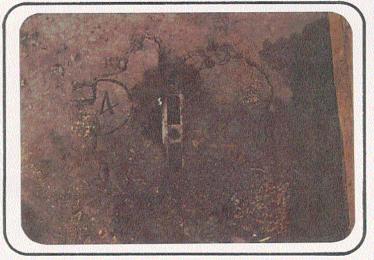


Fig. 2 Insert in 2" Concrete (Test # 14) - 9,000 lbs.



Fig. 3 Insert in 3" Concrete
Near a strand
(Test # 7) - 16,500 lbs.

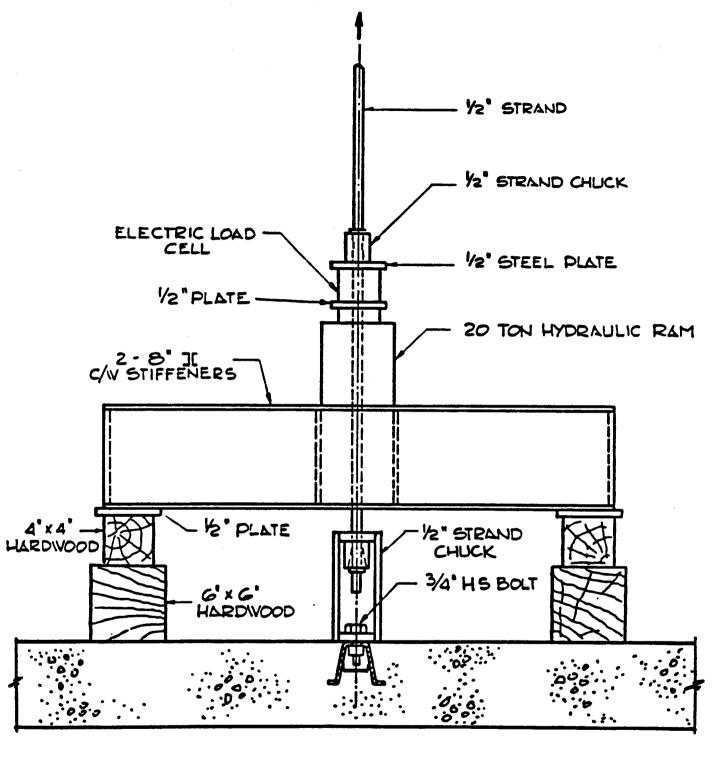
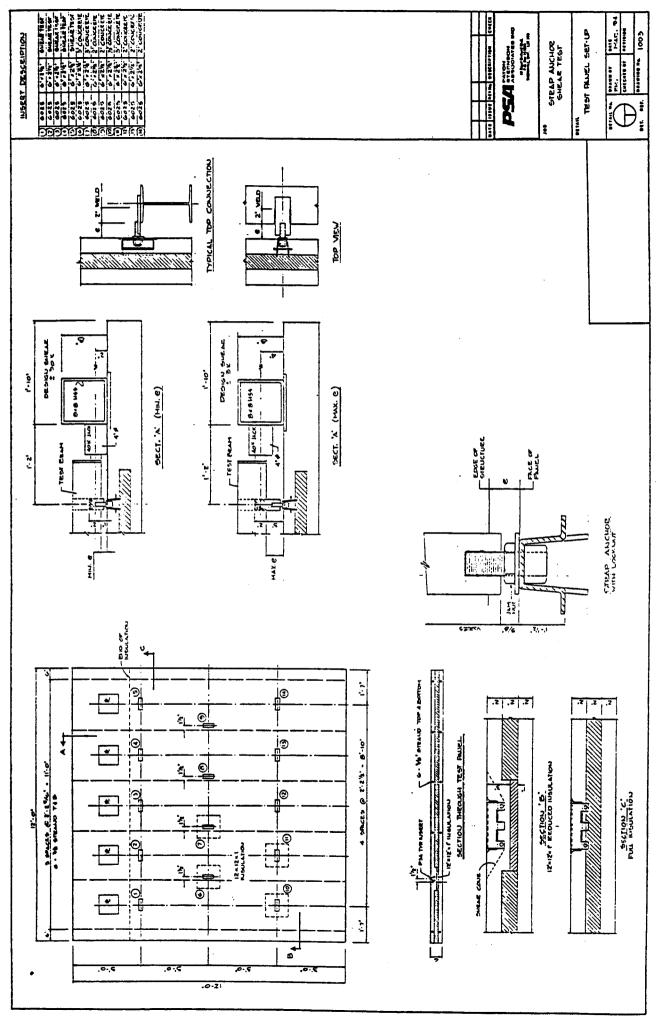
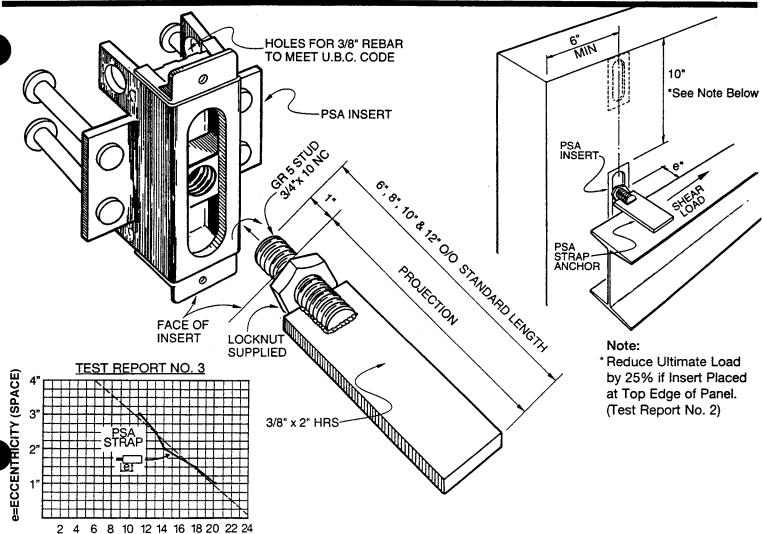




Fig. 4 Insert in 3" Conc. No strand (Test #11) 14,600 lbs.



TEST SET-UP FOR PULLOUT TESTS FIG. 5

PSA STRAP ANCHORS

FEATURES:

• Ultimate Pull-out Capacity

ULTIMATE SHEAR LOAD IN KIPS

Strap Anchors Develop full Ultimate Capacity of the insert

Insert Type	<u>Depth</u>	<u>Length</u>	Ult. Pull-Out Capacity
4525	2 1/2"	4 1/2"	12,000 lbs
6025		6"	
4535	3 1/2"	4 1/2"	16,000 lbs
6035		6"	
4545	4 1/2"	4 1/2"	20,000 lbs
6045		6"	

Ultimate Pull-Out Capacity Based on Tests Performed in 5,000 psi Normal Weight Concrete (Refer to PSA Test Report No.1)

Ultimate Shear Capacity

20,350 lbs. at 1" Eccentricity (See Graph Above)
Ult. Shear Capacity based on Tests Performed in 6,000 psi
Normal Weight Concrete (Refer to PSA Test Report No. 3)

- Standard Strap Anchor Lengths 6", 8", 10" & 12" Out/Out
- Available Finishes Epoxy or Hot Dipped
 Galvanized. (Stainless Steel available on Special Order)
- Material High Strength weldable grade HRS Steel
- Lock Nut Ensures Positive Connection in Both Directions

in Canada

ACCESSORIES, INC.

7550 North Linder Avenue Skokie, Illinois 60077 USA 705/675-1560 Fax: 708/675-0083

PATON STEENSON ASSOC. INC.

10 Royal Orchard Blvd. P.O. Box #53009 Thornhill, Ontario L3T 7R9 905/889-7357 Fax: 905/889-7648 **DISCLAIMER:** The use of PSA inserts should be approved by a qualified professional engineer or architect.

TEST REPORT NO. 5

MORE PULL-OUT TESTS ON

PSA SLOTTED INSERTS

At Pre-Con Company Plant

MAY, 1994

ACKNOWLEDGEMENT

Special thanks to BOB MILLER AND ROGER WONG of Pre-Con Company for their help and advice in making this test program possible.

NOTICE

This publication is intended for the use of professional personnel, competent to evaluate the significance and limitations of its contents and who will accept responsibility for the application of the material it contains. Pre-Con Company and Paton Steenson Associates Inc. disclaim any and all responsibility for the application of the stated principles or for the accuracy of the information contained herein.

May, 1994

LOAD TESTS ON PSA SLOTTED INSERTS TEST REPORT NO.5

INTRODUCTION

The purpose of this test program was, (a) to determine the ultimate pull-out capacity of PSA Slotted Inserts when the load is as applied at one end of the insert, (b) to find out if the ultimate pull-out capacity could be increased by adding reinforcing steel through the holes in the legs of the insert, and (c) to reconfirm the ultimate pull-out capacity of PSA Slotted Inserts as previously tested.

TEST PANEL

Two concrete test panels were manufactured at the Pre-Con Plant in Brampton, Ontario on April 22, 1994 as part of a normal day's production. The details of the test panels are shown on Drawing Nos. 1006 & 7, included in Appendix A. Load tests were conducted on May 2nd when the test panels were 10 days old. The average concrete strength, as determined by concrete test cylinders was 5853 psi at the time of the test. The test panels were not prestressed but were reinforced for handling purposes by a nominal layer of welded wire fabric located underneath the inserts. The concrete was cured in a normal manner (not accelerated). Additional reinforcing steel was provided through the legs of specific inserts as shown in detail on the test panel drawings and as noted in the table of test results.

TEST METHOD

The test load, in all cases, was applied to the inserts through their normal connection devices using a 20 ton hydraulic ram and hand operated pump. A load cell with a digital readout gauge was used to obtain an accurate direct load measurement. Recent calibration data for the load cell is included in Appendix A.

Figures 1 and 2 illustrate the conventional test arrangement used. A high strength bolt in the load transfer bracket was attached to the heavy duty nut built into the insert. The load was applied with the nut located either in the center of the insert or at one end of the insert as noted on the drawings and in the table of test results. All inserts were tested for ultimate pull-out capacity.

A visual inspection of the pattern of failure cracking was made throughout the tests. The mode of failure was was determined, photographed and recorded.

PSA Test Report No. 5 May 1994 Page 2

TEST PROGRAM

Inserts were both 4 1/2" and 6" long and either 2 1/2", 3 1/2" or 4 1/2" deep. Heavy duty square nuts are contained within each insert. The load was applied to the insert using a 3/4" high strength bolt located either at the center or at one end of the insert.

drawings, in order to determine the true unreinforced capacity of these inserts.

Additional reinforcing steel was placed through the holes in the legs of specific inserts. This reinforcement consisted of either 2 - 10M (#3) straight bars or one 10 M (#3) hairpin. In all cases.

All inserts were positioned away from the edges and corners of the panels, as shown on the

A table of test results is given in Appendix A.

this reinforcement was flat (not stepped).

DISCUSSION

TEST RESULTS

- 1. In all cases the recommended ultimate capacity of these inserts was developed regardless of whether the bolt was located at the center or at the end of the insert. The minor variation between individual tests results is considered to be insignificant.
- 2. There was no significant increase in ultimate capacity when additional flat reinforcing steel was placed through the inserts. The individual test results in these cases were inconclusive. However the use of such additional reinforcing steel, as required by the UBC Code is highly recommended.
- 3. The test results compare closely with similar tests done in September, 1993 as reported in
- (a) In the case of the 2 1/2" deep inserts (12 kip nominal), the average ultimate capacity was 13013 lbs. compared with 13,475 lbs. previously. In all cases the mode of failure was a typical concrete failure cone extending to the full depth of the insert.

PSA Test Report No. 5 May 1994 Page 3

(b) In the case of the 3 1/2" inserts (16 kip nominal), the average ultimate capacity was 17,957 lbs. compared with 18,850 lbs. previously. In all cases (except two) the mode of failure was a typical concrete failure cone extending to the full depth of the insert studs. The other two tests produced a typical mechanical failure of the insert lips at 18,700 lbs. compared with 18,800 lbs. previously. This test confirms the balanced design of this insert. The shoulder studs anchored to the insert legs have increased the concrete capacity of the insert up to its mechanical capacity.

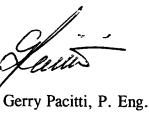
(c) In the case of the 4 1/2" inserts (20 kip nominal), the average ultimate capacity

was 22,541 lbs. compared with 21,566 lbs. previously. Two tests were stopped prior to failure at approximately 24,000 lbs. for fear of over loading the load cell. Two other tests were affected by an adjacent crack in the panel caused by a previous test. The mode of failure for the other four tests was a typical concrete

- failure cone extending to the full depth of the insert studs. These tests confirm the performance of the shoulder studs and represent the highest loads ever achieved with PSA Inserts.
 Test No. A12 was disregarded because the identification tag for this insert had become embedded in the concrete and caused a smooth shear plane through the concrete failure
- 5. Some test results were disregarded because the panel had been cracked near the test insert, by an adjacent test. In future the test inserts should be placed further apart so that one insert failure cannot affect another.

cone. As A result, the size of the failure cone was reduced to about 2/3 its usual size.

CONCLUSIONS AND RECOMMENDATIONS


- 1. The ultimate capacity of these inserts is not dependent on the presence of reinforcing steel in the concrete.
- 2. The ultimate capacity of these inserts can be developed whether the load is applied at the center or at the end of the insert.
- 3. The ultimate capacity of these inserts is governed by the strength of the concrete failure cone which in turn is a function of the embedded depth of the insert and/or stud anchors.
- 4. The ultimate capacity of these inserts in <u>not</u> increased by the use of flat reinforcing bars or hairpins inserted through the holes in the insert legs. However this practice is recommended in order to comply with the UBC Code, particularly in seismic areas.

PSA Test Report No. 5 May 1994 Page 4

5. When used in minimum 5000 psi. concrete with appropriate edge distances, the ultimate pull-out capacities of these inserts are as follows:

INSERT TYPE	ANCHORAGE DEPTH	AVERAGE FAILURE (PREVIOUS)	AVERAGE FAILURE (CURRENT)	NOMINAL ULTIMATE CAPACITY
4525	2 1/2"	13,475 lb.	12,716 lb.	12,000 lb.
6025	2 1/2"	13,475 lb.	13,260 lb.	12,000 lb.
4535	3 1/2"	18,850 lb.	17,792 lb.	16,000 lb.
6035	3 1/2"	18,850 lb.	18,162 lb.	16,000 lb.
4545	4 1/2"	21,566 lb.	22,467 lb.	20,000 lb.
6045	4 1/2"	21,566 lb.	22,597 lb.	20,000 lb.

Peto MacCallum Ltd.

May 15. 1994

APPENDIX A

- 1. Table of Test Results (2 Pages).
- 2. Calibration Report.
- 3. Photographs Figs. 1 through 10 incl.
- 4. Fig. 11 Test Set Up.
- 5. Drawing No. 1006 Test Panel "A".
- 6. Drawing No. 1007 Test Panel "B".
- 7. Data Sheet for PSA Strap Anchors.
- 8. Data Sheet for PSA Inserts.

TEST RESULTS

PSA SLOTTED INSERTS - TEST REPORT NO. 5

INSERT TYPE	TEST NUMBER	INSERT LOCATION	EXTRA REINF.	BOLT LOCATION	FAILURE LOAD (Lbs.)	REMARKS
	(12 KIP)	6" x 2 1/2" INS	ERTS - LOA	D APPLIED AT	CENTER OF	INSERT
6025	A1	Internal	1 hairpin	Center	13,800	Typ. concrete cone
6025	A11	Internal	None	Center	14,550	Typ. concrete cone
6025	B15	Internal	None	Center	13,100	Lge. conctere cone
	(12 KIP)	6" x 2 1/2"	INSERTS -	LOAD APPLIED	AT END OF	INSERT
6025	A3	Internal	2 - #3 Str.	End	13,020	Typ. concrete come
6025	A9	Internal	None	End	12,120	Typ. concrete cone
6025	B13	Internal	None	End	12,970	Lge. concrete cone
	(12 KIP) 1	1/2" x 2 1/2" INS	SERTS - LOA	D APPLIED AT	CENTER OF	INSERT
4525	A4	Internal	1 Hairpin	Center	12,240	Typ. concrete cone
4525	A10	Internal	None	Center	13,120	Typ. concrete cone
4525	B14	Internal	None	Center	13,400	Lge. concrete cone
	(12 KIP)	4 1/2"X 2 1/2	" INSERTS -	LOAD APPLIEI	D AT <u>END</u> OF	INSERT
4525	A2	Internal	2 - #3 Str.	End	13,120	Typ. concrete cone
4525	A12	Internal	None	End	(10,600)**	Tape fouled cone
4525	B16	Internal	None	End	11,700	Lge. concrete cone
	(16 KIP)	6" X 3 1/2" IN:	SERTS - LOA	AD APPLIED AT	CENTER OF	INSERT
6035	A 7	Internal	2 - #3 Str.	Center	18,700	Insert lips failed
6035	A15	Internal	None	Center	18,150	Lge. concrete cone
6035	B5	Internal	None	Center	17,100	Typ. concrete cone
	(16 KIP)	6" X 3 1/2	" INSERTS -	LOAD APPLIEI	AT <u>END</u> OF	INSERT
6035	A5	Internal	1 Hairpin	End	(11,8070)*	Cracked before test
6035	A13	Internal	None	End	(15,850)*	Cracked before test
6035	B7	Internal	None	End	18,700	Insert lips failed
		Test F	Results continue	ed on next page		

TEST RESULTS (CONTINUED)

TEST REPORT NO 5

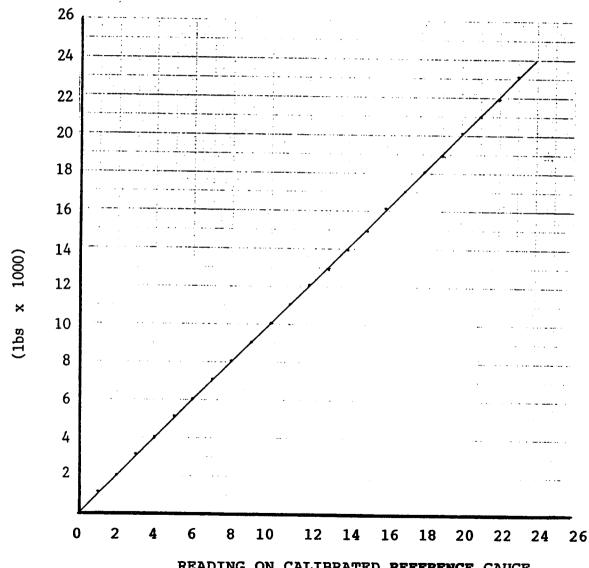
May 2, 1994

INSERT TYPE	TEST NUMBER	INSERT LOCATION	EXTRA REINF.	BOLT LOCATION	FAILURE LOAD (Lbs.)	REMARKS	
((16 KIP) 4 1/2" X 3 1/2" INSERTS - LOAD APPLIED AT <u>CENTER</u> OF INSERT						
4535	A6	Internal	2 - #3 Str.	Center	18,900	Lge. concrete cone	
4535	A14	Internal	None	Center	16,960	Typ. concrete cone	
4535	В8	Internal	None	Center	16,700	Lge. concrete cone	
	(16 KIP) 4	1/2" X 3 1/2" IN	SERTS - LO	AD APPLIED A	T END OF INS	SERT	
4535	A8	Internal	1 Hairpin	End	17,800	Typ. concrete cone	
4535	A16	Internal	None	End	(15,100)*	Cracked before test	
4535	В6	Internal	None	End	18,600	Typ. concrete cone	
	(20 KIP)	6" X 4 1/2" IN	SERTS - LOA	D APPLIED AT	CENTER OF	INSERT	
6045	B11	Internal	None	Center	24,000***	Test stopped early	
6045	B1	Internal	1 Hairpin	Center	22,900	Typ. concrete cone	
	(20 KIP)	6" X 4 1/2	" INSERTS -	LOAD APPLIEI	O AT <u>END</u> OF	INSERT	
6045	В9	Internal	None	End	22,900	Typ. concrete cone	
6045	В3	Internal	2 - #3 Str.	End	20,500	Cracked before test	
	(20 KIP) 4 1	1/2" X 4 1/2" IN	SERTS - LOA	AD APPLIED AT	CENTER OF	INSERT	
4545	B10	Internal	None	Center	24,200***	Test stopped early	
4545	В4	Internal	1 Hairpin	Center	21,900	Typ. concrete cone	
	(20 KIP) 4	1/2" X 4 1/2" I	NSERTS - LO	AD APPLI3ED	AT <u>END</u> OF I	NSERT	
4545	B2	Internal	2 - #3 Str.	End	20,470	Cracked before test	
4545	B12	Internal	None	End	21,300	Typ. concrete cone	

NOTES

- * Panel was cracked from adjacent test.
- ** Insert identification tape was embedded in concrete close to insert.
- *** Test was stopped at 25 kip capacity of the load cell.

CALIBRATION CHART


For

STRAINSERT UNIVERSAL FLAT LOAD CELL MODEL FL25U(C) S/N 08908-2

Coupled with

DORIC TRANSDUCER INDICATOR S/N 400236

DATE: September 3, 1993

READING ON LOAD CELL GAUGE

READING ON CALIBRATED REFERENCE GAUGE

(lbs 1000)

PHOTOGRAPHS

Fig. 1 Test Set-Up
Pre-Con Engineers

Fig. 2 Identification Tape fouled concrete cone (Test # A12)

Fig. 3 Crack in panel prevented full development of the failure cone.

Cone extends full depth of studs.

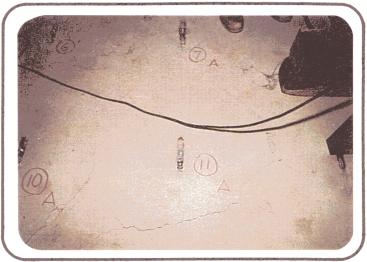


Fig. 4 Typ. 2 1/2" (12 kip) insert (Mk 6025) Test # A11 - 14,550 lbs. Load at center.

Fig. 5 Typ. 2 1/2" (12 kip) insert (Mk 6025) Test # B13 - 12,970 lbs. Load at end.

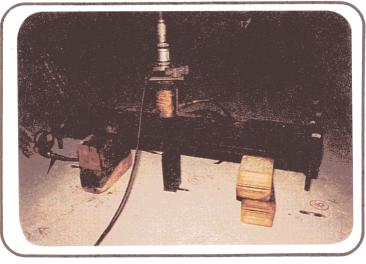
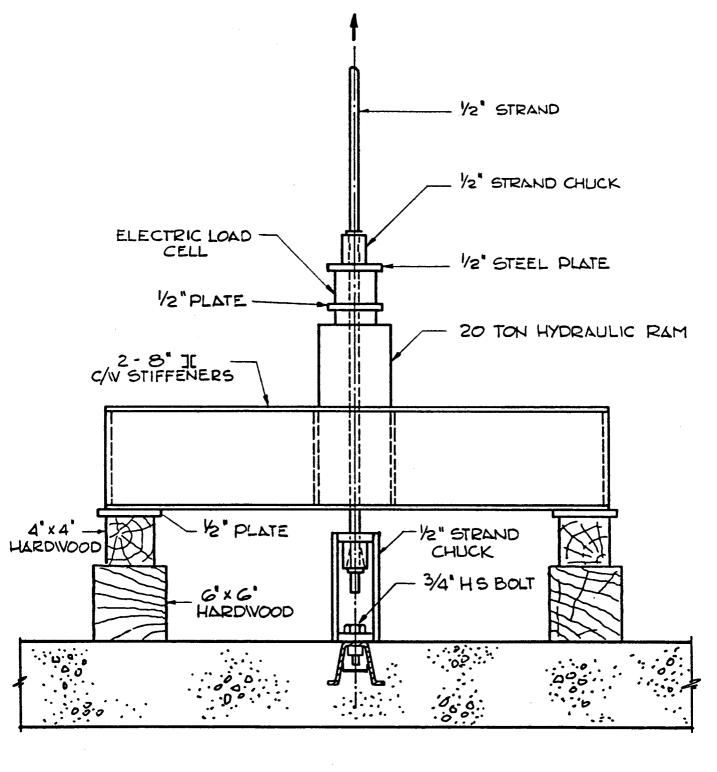
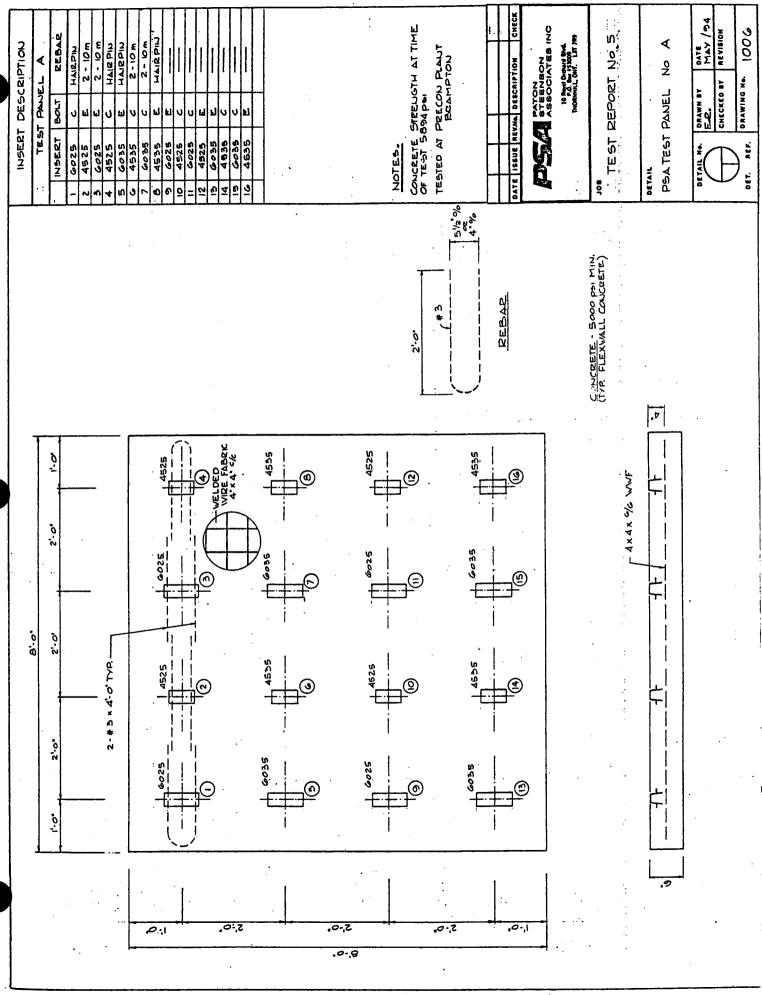


Fig. 6 Test Set-Up showing 20 Ton Jack, hand pump and digital load cell.

Load located at end of insert.

Fig. 7 Typ. 3 1/2" (16 kip) insert (Mk 6035) Test # A6 - 18,900 lbs.(2 - #3 Bars str)


Fig. 8 Typ. 3 1/2" (16 kip) insert (Mk 6035) Test # B5 - 17,100 lbs. Load at center.


Fig. 9 Typ. 4 1/2" (20 kip) insert (Mk 4525) Test # B4 - 21,900 lbs. Load at center.

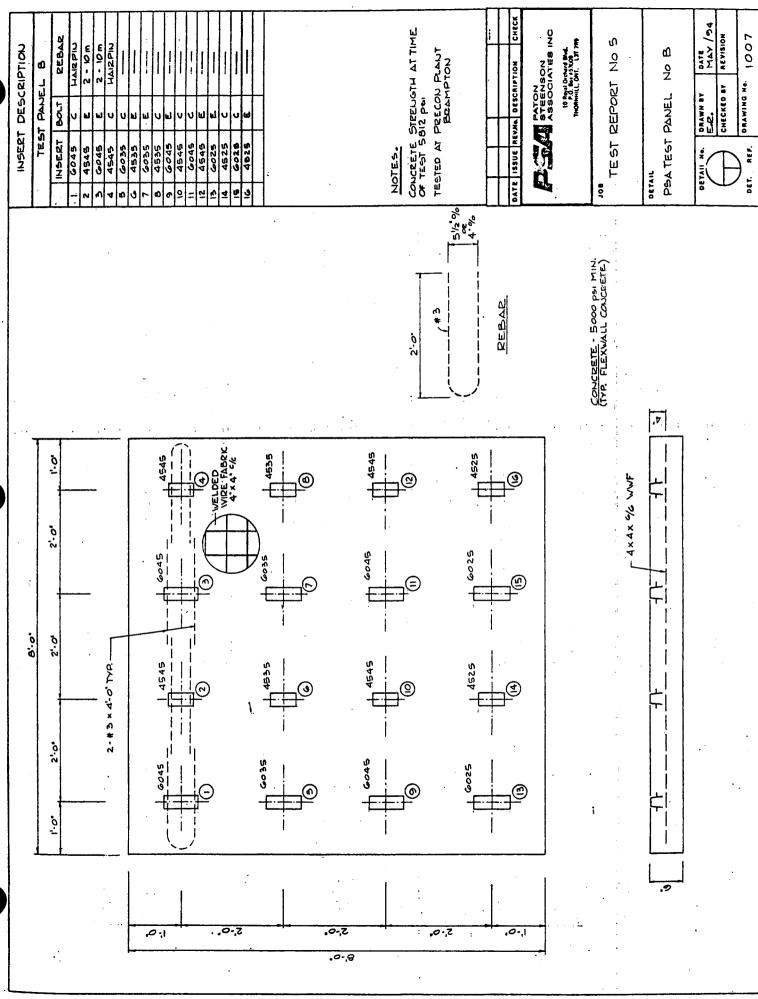
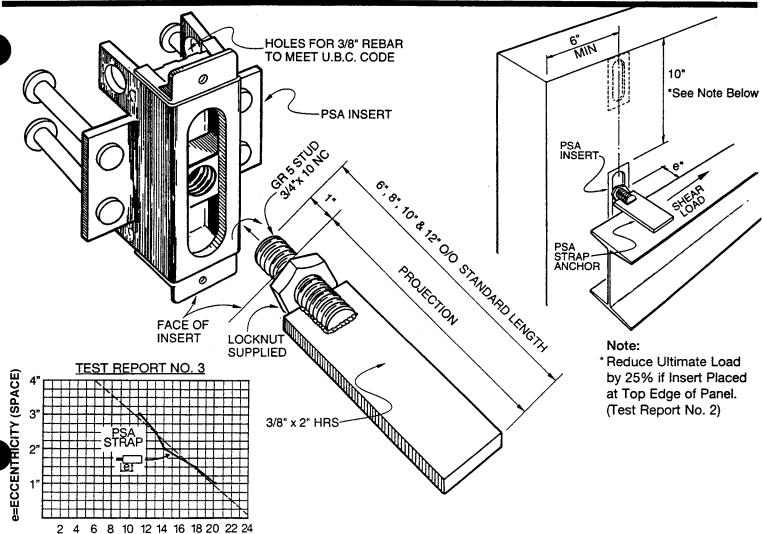


Fig. 10 Test Set-Up.
20 Ton Jack.
Digital Load Cell.
Load Transfer Bracket.


TEST SET-UP
FOR PULLOUT TESTS
FIG.11

PSA STRAP ANCHORS

FEATURES:

• Ultimate Pull-out Capacity

ULTIMATE SHEAR LOAD IN KIPS

Strap Anchors Develop full Ultimate Capacity of the insert

Insert Type	<u>Depth</u>	<u>Length</u>	Ult. Pull-Out Capacity
4525	2 1/2"	4 1/2"	12,000 lbs
6025		6"	
4535	3 1/2"	4 1/2"	16,000 lbs
6035		6"	
4545	4 1/2"	4 1/2"	20,000 lbs
6045		6"	

Ultimate Pull-Out Capacity Based on Tests Performed in 5,000 psi Normal Weight Concrete (Refer to PSA Test Report No.1)

Ultimate Shear Capacity

20,350 lbs. at 1" Eccentricity (See Graph Above)
Ult. Shear Capacity based on Tests Performed in 6,000 psi
Normal Weight Concrete (Refer to PSA Test Report No. 3)

- Standard Strap Anchor Lengths 6", 8", 10" & 12" Out/Out
- Available Finishes Epoxy or Hot Dipped
 Galvanized. (Stainless Steel available on Special Order)
- Material High Strength weldable grade HRS Steel
- Lock Nut Ensures Positive Connection in Both Directions

in Canada

ACCESSORIES, INC.

7550 North Linder Avenue Skokie, Illinois 60077 USA 705/675-1560 Fax: 708/675-0083

PATON STEENSON ASSOC. INC.

10 Royal Orchard Blvd. P.O. Box #53009 Thornhill, Ontario L3T 7R9 905/889-7357 Fax: 905/889-7648 **DISCLAIMER:** The use of PSA inserts should be approved by a qualified professional engineer or architect.

Test Report No. 6 UPDATE

The JVI Gold J-Finish has been updated to a Platinum J-Finish per the specifications below.

The Platinum J-Finish is a 3 step process as defined below.

- 1. Zinc Plate Per ASTM B633 FE/Zn12 TYPE II, SC3 Severe, (minimum thickness 0.0005")
- 2. Trivalent Clear Chromate (RoHS and ELV compliant)
- 3. Sealer

The "PLATINUM J-FINISH" shall meet the following specifications.

	PLATINUM J-FINISH SPECIFICATIONS				
1.	Coating Thickness	Minimum .00050" on significant surface.			
2.	Appearance	There shall be no evidence of blisters, peeling, pinholes, pits or rough surface on parts.			
3.	Adhesion Requirements	There shall be no defects such as peeling, blisters or cracking after heating coated parts to $300 \pm 10^{\circ}$ C for 30 ± 5 minutes and quenching in water at 15° C to 25° C.			
4.	Corrosion Resistance ASTM B 117	Part shall show no evidence of white corrosion after 96-hour exposure.			
		Part shall show no evidence of red rust after 500-hour exposure.			

Salt spray testing in accordance with Test Report 6 have been conducted and the results included with this update. The Platinum J-Finish passed all testing the previous gold J-Finish has been subjected to.

The motivation for the change was to have a RoHS/ELV compliant finish, a finish that does not require a hexavalent chromium. While this initiative has been in place since 2003, the trivalent equivalent available until today has not been satisfactory. Recent advances in the trivalent coating have made this a clear change for the better.

Please consider Test Report No. 6 to serve as reference only and consider the latest certificates of compliance to replace Test Report No. 6 for all specification and submittal purposes.

Please contact team JVI with any questions.

info@jvi-inc.com 847-675-1560 1-800-742-8127 (toll free) www.jvi-inc.com

Coatings 85 Ltd.
6995 Davand Drive, Mississauga, Ontario L5T 1L5
Tel: (905) 564-1711 Fax: (905) 564-2819

CERTIFICATE OF COMPLIANCE

A.B.M. Tool & Die Co. Ltd Customer: **Processing Location:** Coatings 85 Ltd.

Specification: ASTM-B633-FE/ZN12 TYPE11+SEAL Part Number: Sample parts

Type of Finish: Electroplated Zinc Clear

Trivalent +Seal

Prepared Date: September 25, 15 **Processing Date** August 24,2015

Actual Parts processed to the above specification have been tested with results as detailed below.

		1	
	TEST PERFORMED	RESULT	SPECIFICATION
1.	Coating Thickness ASTM-B633-FE/ZN12 TYPE11+SEAL Actual parts tested	.00057 .00060 .00059	Minimum .00050 on significant surface.
2.	Appearance ASTM-B633-FE/ZN12 TYPE11+SEAL Actual parts tested	No evidence of blisters, peeling, pinholes, pits or rough surface on parts.	There shall be no evidence of blisters, peeling, pinholes, pits or rough surface on parts.
3.	Adhesion Requirements ASTM-B633-FE/ZN12 TYPE11+SEAL Actual part tested	No evidence of peeling, blisters or cracking after heating coated parts to $300 \pm 10^{\circ}$ C for 30 ± 5 minutes and quenching in water at 15° C to 25° C.	There shall be no defects such as peeling, blisters or cracking after heating coated parts to $300 \pm 10^{\circ}$ C for 30 ± 5 minutes and quenching in water at 15° C to 25° C.
4.	Corrosion Resistance – Neutral ASTM-B633-FE/ZN12 TYPE11+SEAL 3 Actual parts tested	Passed	Part shall show no evidence of white corrosion after 96-hour exposure.
		Passed	Part shall show no evidence of red rust after 500-hour exposure.
Clif	ford Allen		

Q.C. Supervisor

JAGEMANN PLATING CO.

PH: 920 / 682-6883 • FAX: 682-8003 • 1324 SO. 26th ST. • P.O. BOX 1447 • MANITOWOC, WI 54221-1447

LABORATORY CONTROL • ELECTRO PLATING • METAL FINISHING

ISO 9001:2008 CERTIFIED

In-House Test

Process Verification: Zinc Trivalent Clear Chromate Plate .0005 Minimum Thickness, With Sealer (Rack Process)

Date:	11/16/2015		Your Ref #:	25DL/Zincroshield		
Subject:	Salt Spray Test		Part #:	Sample		
			Inspection Date:	10/26/2015 -		
				11/16/2015		
Plating Sp	ecification:	Zinc Trivalent Clea	t Clear Chromate Plate .0005 Minimum Thickness			
		With Sealer				
		1010 Material				
		Pin				
Actual Pla	ting Thickness:	.0005100062				

Salt Spray Test Results (ASTM B 117)

Hours Of Exposure	Visual Observations	Test Requirements	Pass/Fail
120	After 120 hours of exposure to the below described test conditions, the parts were removed from the test chamber, rinsed with de-ionized water, dried with filtered dry compressed air and inspected. The surface of the test sample shows no visible white rust products in the concern area. After 500 hours of exposure to the below described test conditions, the parts were removed from the test chamber, rinsed with de-ionized water, dried with filtered dry compressed air and inspected. The surface of the test sample shows visible white rust, no visible red rust products.	We were requested to salt fog test the parts according to American Society for Testing and Materials (ASTM) B 117 for 500 hours.	PASS

Solution	5 % NaCl
Chamber Temperature	95 ± 1 ° F
Specific Gravity @ 95 ° F	1.025 to 1.040
PH Of Collected Solution	6.5 to 7.2
Average Collection Rate	1 – 2 ml/hr./80 cm ² surf. area

It is our policy to retain samples for a minimum of 10 days from the report date, after which time they may be discarded. The data herein represents only the item(s) testes. This report shall not be reproduced except in full, without prior written permission of Jagemann Plating Company.

Electronic document
Original Contains Signature
Signed: _____

John R. Nelesen Quality Assurance Manager

10 ROYAL ORCHARD BOULEVARD • P.O. BOX 53009 • THORNHILL, ONTARIO L3T 7R9 TEL 905-889-7357 • FAX 905-889-7648

TEST REPORT NO. 6

CORROSION TESTS ON

PSA STRAP ANCHORS AND INSERTS

Salt Spray Tests - ASTM B117-94

November, 1994

NOTICE

This publication is intended for the use of professional personnel, competent to evaluate the significance and limitations of its contents and who will accept responsibility for the application of the material it contains. Paton Steenson Associates Inc. and JVI Accessories, Inc. disclaim any and all responsibility for the application of the stated principles or for the accuracy of the information contained herein.

APPENDIX A

- 1. Summary Table of Salt Spray Test Results
- 2. Individual Salt Spray Test Reports
 - Page 1 J-Type Finish PSA Strap Anchor
 - Page 2 Zinc Finish PSA Strap Anchor
 - Page 3 H.D. Galv. Finish PSA Strap Anchor
 - Page 4 Epoxy Finish PSA Insert
 - Page 5 H.D. Galv. Finish PSA Insert
 - Page 6 J-Type Finish PSA Insert
- 3. Photographs Figs. 1 through 6 incl.
- 4. Fig. 7 Typical Salt Spray Cabinet
- Fig 8. Excerpt from ASTM B117-94 Specification
 "Standard Practice for Salt Spray Testing Apparatus"
- 6. PSA Data Sheet for Strap Anchor Connections.
- 7. PSA Insert Brochure

10 ROYAL ORCHARD BOULEVARD • P.O. BOX 53009 • THORNHILL, ONTARIO L3T 7R9
TEL 905-889-7357 • FAX 905-889-7648

November, 1994

ACCELERATED CORROSION TESTS TEST REPORT NO. 6

INTRODUCTION

The purpose of this report is to compare the corrosion resistance of the new J - TYPE automotive coating used on PSA Strap Anchors and Inserts with the traditional zinc, epoxy and hot dip galvanized coatings used in the construction industry.

TEST SAMPLES

The following insert and strap anchor samples were tested:

Coating	Sample Tested
J - Type	PSA Strap Anchor - Mk. 675
Zinc	PSA Strap Anchor - Mk. 675
Hot Dip Galvanized	PSA Strap Anchor - Mk. 875
Ероху	PSA Insert - Mk. 6025
Hot Dip Galvanized	PSA Insert - Mk. 6025
J - Type	PSA Insert - Mk. 6025

TEST METHOD

All samples were placed in a commercial Salt Spray Cabinet (Fig. 7) and tested for corrosion resistance in accordance with the ASTM B117-94 Specification "Standard Method of Salt Spray (Fog) Testing" (Fig. 8). A visual inspection was made every 24 hours. The condition of each sample was determined, photographed and recorded.

PSA Test Report No. 6 November, 1994 Page 2

TEST RESULTS

Detailed test observations for each sample, together with a summary table of Salt Spray Tests are included in Appendix A. Photographs showing the condition of each sample when the particular test was terminated, are also included in Appendix A (Figs. 1 to 6).

DISCUSSION

- 1. The <u>J-Type</u> corrosion resistant finish (guaranteed against red rust for 500 hours), was still intact on both the insert and the strap anchor samples when each test was terminated. There was some white rust but no sign of red rust even after <u>624</u> hours (strap anchor) and <u>648</u> hours (insert) of test, (see Figs. 2, 4a and 4b in Appendix A). This corrosion resistant finish is being extensively used by the automotive industry for underhood fasteners, brakes and steering parts etc., where salt damage is likely to occur.
- 2. The zinc finish on the PSA strap anchor was 0.00033" thick in accordance with ASTM specification B633 Type II. After 168 hours when the test was terminated, considerable white and red rust had developed on this sample. (Fig. 2). This finish is not used on any PSA products. The test was made for comparative purposes only.
- 3. The <u>hot-dip galvanized</u> finish on the PSA strap anchor was 0.0048" thick, (four times as thick as the insert). This sample was covered with white rust after <u>360</u> hours when the test was terminated, but no red rust was observed. (Fig. 1).
- 4. The <u>hot-dip galvanized</u> finish on the PSA insert was completely covered with white rust after <u>648</u> hours when the test was terminated. It looked like a Christmas tree. Traces of red rust were observed at termination. (Figs. 5a and 5b)
- 5. The <u>epoxy</u> finish on the PSA insert performed very well. At <u>168</u> hours, red rust started along some sharp edges of the sample. At <u>648</u> hours when the test was terminated, significant red rust had occurred along sharp edges primarily on the bottom of the sample. (figs. 6a and 6b). It should be noted that 648 hours of salt spray is an extreme exposure for this type of finish. The epoxy finish out-performed the hot-dip galvanized finish.

PSA Test Report No. 6 November, 1994 Page 3

2.

CONCLUSIONS AND RECOMMENDATIONS

- 1. Corrosion resistance of the **J** - Type automotive finish is far superior to any other finish tested.
- The zinc finish performed poorly in comparison with the other finishes tested. This finish is not used on any PSA products.
- 3. The hot dip galvanized finish, on both the PSA strap anchor and the Insert performed very well and is recommended as an acceptable construction finish for most applications. Stainless steel inserts are recommended for exposed corrosive conditions.
- The epoxy coating on the PSA insert provides excellent corrosion resistance under normal exposure conditions. Special care must be taken to ensure proper epoxy coverage inside the cavity and at cut edges. The epoxy finish is recommended as an acceptable finish for most building connections.

PATON STEENSON ASSOCIATES INC.

W. D. Paton, P. Eng.

November 15, 1994

SUMMARY OF SALT SPRAY TESTS

			т——	1	<u> </u>				,	
J-TYPE	PSA INSERT	(0.00037)	Nii	Nii	Nii	Nii	Nii	Slight White	No Red Test Terminated	
H. D. GALV.	PSA INSERT	(0.00127")	Nil	Nil	White Started	Moderate White	Moderate White	Heavy White	Complete White Test Terminated	
EPOXY	PSA INSERT	(0.0023")	I!N	Nii	Nii	Red Started at Holes & Edges	Same	Same	Hvy. Red at Edges Test Terminated	
H. D. GALV.	PSA STRAP ANCHOR	(0.0048")	Nii	Nii	Nii	Moderate White	Hvy. White-No Red Test Terminated			
ZINC	PSA STRAP ANCHOR	(0.00033")	Nii	Nil	Nii	White & Red Start Test Terminated				
J-TYPE	PSA STRAP ANCHOR	(0.00034")	Nii	Nii	Nii	Nil	Nil	Slight White	No Red Test Terminated	
	HOURS	(Av. Thickness)	24	72	96	168	336	432	648	

NOTE:

(1) Detailed test observations and photographs of all test samples are included in Appendix A.

AUTOTEK KLECTROPLAING INC.

SALT SPRAY TEST RESULTS

Test Method: ASTM B117-94		
Customer: Paton Steenson Associates Inc.	Part Number:	Strap Anchor
Revision Code: Hot Dip Galvanized	Cast Day:	N/A
Lot Number: N/A	Date Plated:	
Start Date: 06/13/1994 1300hrs	Finish Date:	06/28/1994 1300hrs
Exposure Period: 360 hrs (Test Terminated))	
#3:	0.0048 0.0047 0.0050 0.0047	
EVAULATION RESULTS AS PER SPECIFICATION NO	JMBKR: ASTM B117-94	
Number of Hours (96): No sign of white co	prosion products or	red rust.
Number of Hours(120):First sign of white	corrosion product .	
Number of Hours (360): No sign of base me parts exhibited 100 percent white corrosic		rust).
Signature: D. Make Ram	Date: 06/28/	1994

AUTOTEK KLECTROPLAING INC.

SALT SPRAY TEST RESULTS

Test Method: ASTM B117-94		
Customer: Paton Steenson Associates Inc.	Part Number:	Strap Anchor
Revision Code: Zinc Finish	Cast Day:	N/A
Lot Number: N/A	Date Plated:	05/11/1994
Start Date: 05/12/1994 1130hrs	Finish Date:	05/19/1994 1330hrs
Exposure Period: 168 hrs		
Coating Thickness in Inches:Reading #1: 0.00 #2: 0.00 #3: 0.00 #4: 0.00	0034 0032	
KVAULATION RESULTS AS PER SPECIFICATION NUMBER:	ASTM B117-94	
Number of Hours(24): No sign of white corrosic	on products or	red rust.
Number of Hours (96): No sign of white corrosic	on products or	red rust.
Number of Hours(168): First sign of white corr	rosion product	s and red rust
on threaded portion of part.		

Date: 05/19/1994

Signature: 7. Mark Kan

AUTOTEK KLECTROPLAING INC.

SALT SPRAY TEST RESULTS

Test Method: ASTM B117-94			
Customer: Paton Steenson Associates Inc.	Part Number:	Strap Ancho	r
Revision Code: J-Type Corrosion Finish	Cast Day:	N/A	
Lot Number: N/A	Date Plated:	05/11/1994	
Start Date: 06/12/1994 1130hrs	Finish Date:	06/07/1994	1300hrs
Exposure Period: 624 hrs			
Coating Thickness in Inches:Reading #1: 0.00 #2: 0.00 #3: 0.00 #4: 0.00	035 033		
EVAULATION RESULTS AS PER SPECIFICATION NUMBER:	ASTM B117-94		
Number of Hours(96): No sign of white corrosio	n products or	red rust.	
Number of Hours(432):First sign of white corros	ion product .		
Number of Hours(624): No sign of base metal co	rrosion (red r	rust).	

Date: 06/07/1994

Signature: 7. Haller

AUTOTEK ELECTROPLAING INC.

SALT SPRAY TEST RESULTS

Test Method: ASTM B117-94

Signature: P. Marmillane

Customer: Paton Steenson Associates Inc.	Part Number:	Anchor Bracket
Revision Code: Epoxy Coating	Cast Day:	N/A
Lot Number: N/A	Date Plated:	N/A
Start Date: 09/21/1994 1300hrs	Finish Date:	10/19/1994 1300hr
Exposure Period: 648 hrs		
Coating Thickness in Inches:Not Available		
EVAULATION RESULTS AS PER SPECIFICATION NUMBER:	ASTM B117-94	
Number of Hours(96): No sign of white corrosic	on products or	red rust.
Number of Hours(168): First sign of red rust a	along sharp ed	jes.
Number of Hours(648): significant red rust con	rrosion along a	all sharp edges
	M. M	

Date: 10/19/1994

AUTOTEK ELECTROPLAING INC.

SALT SPRAY TEST RESULTS

Test Method: ASTM B117-94

7. Hathin thama

Signature:

Customer: Faton Steenson Associates Inc.	Part Number:	Anchor Bracket
Revision Code: Galvanized zinc	Cast Day:	N/A
Lot Number: N/A	Date Flated:	N/A
Start Date: 09/21/1994 1300hrs	Finish Date:	10/19/1994 1300hr
Exposure Period: 648 hrs		
Coating Thickness in Inches:Not Available		
EVAULATION RESULTS AS PER SPECIFICATION NUMBER:	ASTM B117-94	
Number of Hours(96): First sign of white corro	osion products	,no red rust.
Number of Hours(168): white corrosion 30–35% ,	, no red rust.	
Number of Hours(648): 100% white corrosion no	red rust.	

Date: 10/19/1994

AUTOTEK ELECTROPLAING INC.

SALT SPRAY TEST RESULTS

Test	Hethod:	ASTH	B117-	94

Customer: Faton Steenson Associates Inc.	Part Number:	Anchor Bracket
Revision Code: J-Type Corrosion Finish	Cast Day:	N/A
Lot Number: N/A	Date Flated:	09/27/1994
Start Date: 09/28/1994 1330hrs	Finish Date:	10/25/1994 1300hrs
Exposure Period: 648 hrs		
Coating Thickness in Inches:Reading #1: 0.00 #2: 0.00 #3: 0.00 #4: 0.00	040 035	
EVAULATION RESULTS AS PER SPECIFICATION NUMBER:	ASTM B117-94	
Number of Hours(96): No sign of white corrosio	n products or	red rust.
Number of Hours(408):First sign of white corros	ion product .	
Number of Hours(648): No sign of base metal co	rrosion (red	rust).
Test terminated.		
		W
Signature: 7. Mathinthan	Date: 10/25/	1994

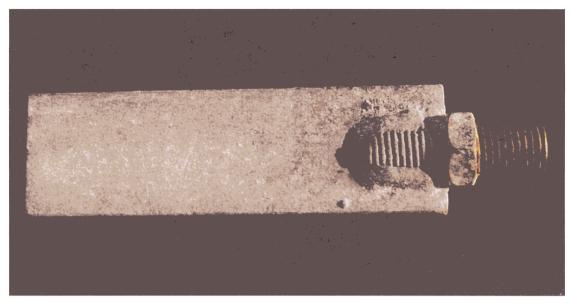


Fig. 1 PSA Strap Anchor Hot Dip Galv. Finish after 360 hours

Fig. 2 PSA Strap Anchor J - Type Finish after 624 hours

Fig. 3 PSA Strap Anchor Zinc Finish after 168 hours

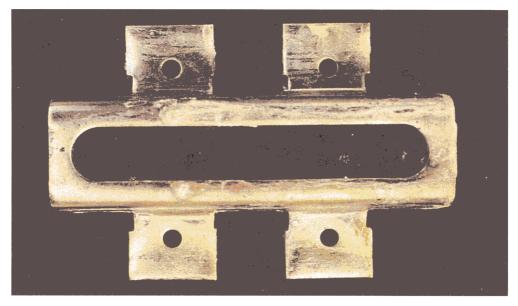


Fig. 4a PSA Insert (Top) J - Type Finish after 648 hours

Fig. 5a PSA Insert (Top) Hot Dip Galv. Finish after 648 hours

Fig. 6a PSA Insert (Top) Epoxy Finish after 648 hours

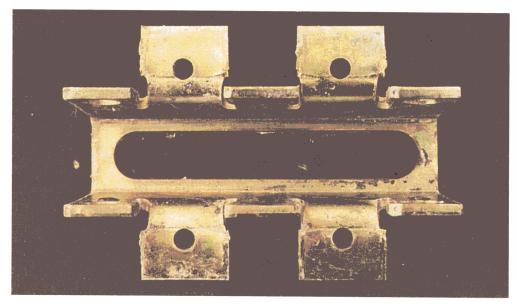


Fig. 4b PSA Insert (Bottom) J - Type Finish after 648 hours

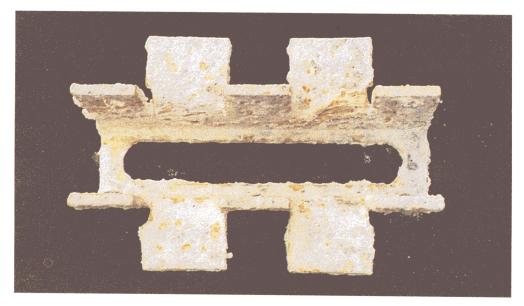


Fig. 5b PSA Insert (Bottom) Hot Dip Galv. Finish after 648 hours

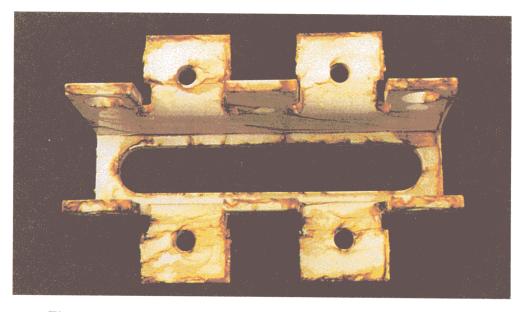
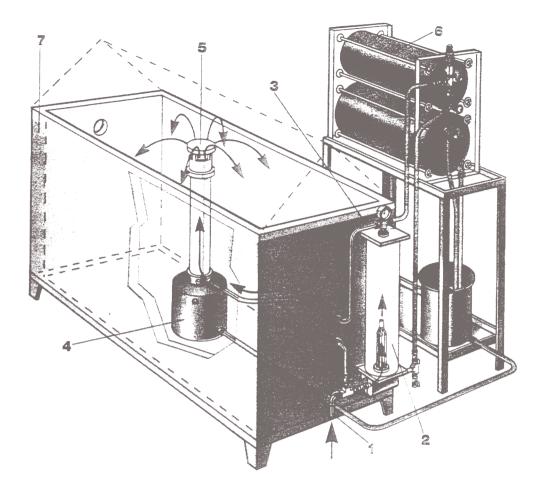



Fig. 6b PSA Insert (Bottom) Epoxy Finish after 648 hours

How a salt fog chamber works.

- **1.** Compressed air enters the humidifying tower via an air line attached to the regulator.
- 2. Air is forced upward through the tower which contains distilled water that is fed from the level control system.

Once the air is in the tower, it reaches a temperature of approximately 118 degrees Fahrenheit.

- **3.** The air is forced out of the top through an air line tube that continues into the chamber until it reaches the atomizer nozzle in the dispersion tower.
- **4.** Here, the solution of 95 percent distilled water and 5 percent salt is atomized in the tank.
- **5.** The atomized solution rises to the top of the dispersion tower where it baffles off the cone into the chamber, providing a consistent salt fog.
- **6.** To ensure that the saline solution is readily available at the base of the

- dispersion tower, the nearby level control system automatically feeds the solution as needed
- 7. The chamber is heated to 95 degrees Fahrenheit. This is accomplished by a "water jacket," which surrounds the chamber with water. The temperature of the water is maintained by two heaters.

The entire procedure is virtually a "hands-off" operation.

AMERICAN SOCIETY FOR TESTING AND MATERIALS 1916 Race St. Philadelphia, Pa 19103
Reprinted from the Annual Book of ASTM Standards. Copyright ASTM If not listed in the current combined index, will appear in the next edition.

Standard Practice for Operating Salt Spray (Fog) Testing Apparatus¹

This standard is issued under the fixed designation B 117; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense to replace Method 811.1 of Federal Test Method Standard No. 151b. Consult the DoD Index of Specifications and Standards for the specific year of issue that has been adopted by the Department of Defense.

1. Scope

- 1.1 This practice describes the apparatus, procedure, and conditions required to create and maintain the salt spray (fog) test environment. Suitable apparatus which may be used is described in Appendix X1. This practice does not prescribe the type of test specimen or exposure periods to be used for a specific product, nor the interpretation to be given to the results.
- 1.2 The values stated in SI units are to be regarded as standard. The inch-pound units in parentheses are provided for information.
- 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

B 368 Method for Copper-Accelerated Acetic Acid-Salt Spray (Fog) Testing (CASS Test)²

D 609 Practice for Preparation of Cold-Rolled Steel Panels for Testing Paint, Varnish, Conversion Coatings, and Related Coating Products³

D 1193 Specification for Reagent Water⁴

D 1654 Test Method for Evaluation of Painted or Coated Specimens Subjected to Corrosive Environments³

E 70 Test Method for pH of Aqueous Solutions with the Glass Electrode⁵

E 691 Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method⁶

G 85 Practice for Modified Salt Spray (Fog) Testing⁷

3. Significance and Use

3.1 This practice provides a controlled corrosive environment which has been utilized to produce relative corrosion resistance information for specimens of metals and coated

¹ This practice is under the jurisdiction of ASTM Committee G-1 on Corrosion of Metals and is the direct responsibility of Subcommittee G01.05 on Laboratory Corrosion Tests.

Current edition approved Feb. 15, 1994. Published April 1994. Originally published as B 117 - 39 T. Last previous edition B 117 - 90.

² Annual Book of ASTM Standards, Vol 02.05.

³ Annual Book of ASTM Standards, Vol 06.01.

⁴ Annual Book of ASTM Standards, Vol 11.01.

5 Annual Book of ASTM Standards, Vol 15.05.

⁶ Annual Book of ASTM Standards, Vol 14.02. 7 Annual Book of ASTM Standards, Vol 14.12. metals exposed in any particular test chamber.

- 3.2 Correlation and extrapolation of corrosion performance based on exposure to the test environment provided by this practice are not always predictable. Correlation and extrapolation should be considered only in cases where appropriated corroborating long-term atmospheric exposures have been conducted.
- 3.3 The reproducibility of results in the salt spray exposure is highly dependent on the type of specimens tested and the evaluation criteria selected, as well as the control of the operating variables. In any testing program, sufficient replicates should be included to establish the variability of the results. Variability has been observed when similar specimens are tested in different fog chambers even though the testing conditions are nominally similar and within the ranges specified in this practice.

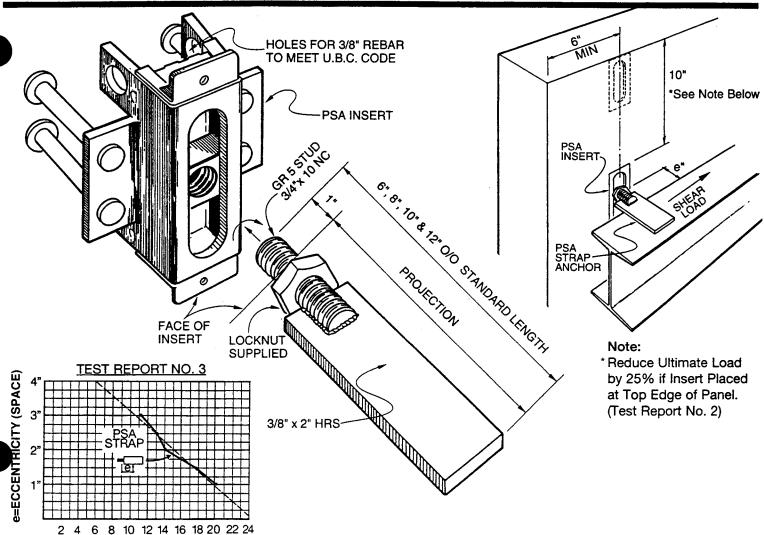
4. Apparatus

- 4.1 The apparatus required for salt spray (fog) exposure consists of a fog chamber, a salt solution reservoir, a supply of suitably conditioned compressed air, one or more atomizing nozzles, specimen supports, provision for heating the chamber, and necessary means of control. The size and detailed construction of the apparatus are optional, provided the conditions obtained meet the requirements of this practice.
- 4.2 Drops of solution which accumulate on the ceiling or cover of the chamber shall not be permitted to fall on the specimens being exposed.

4.3 Drops of solution which fall from the specimens shall not be returned to the solution reservoir for respraying.

4.4 Material of construction shall be such that it will not affect the corrosiveness of the fog.

5. Test Specimens


5.1 The type and number of test specimens to be used, as well as the criteria for the evaluation of the test results, shall be defined in the specifications covering the material or product being tested or shall be mutually agreed upon between the purchaser and the seller.

6. Preparation of Test Specimens

6.1 Specimens shall be suitably cleaned. The cleaning method shall be optional depending on the nature of the surface and the contaminants. Care shall be taken that

PSA STRAP ANCHORS

FEATURES:

• Ultimate Pull-out Capacity

ULTIMATE SHEAR LOAD IN KIPS

Strap Anchors Develop full Ultimate Capacity of the insert

Insert Type	<u>Depth</u>	Length	Ult. Pull-Out Capacity
4525	2 1/2"	4 1/2"	12,000 lbs
6025		6"	
4535	3 1/2"	4 1/2"	16,000 lbs
6035		6"	
4545	4 1/2"	4 1/2"	20,000 lbs
6045		6"	

Ultimate Pull-Out Capacity Based on Tests Performed in 5,000 psi Normal Weight Concrete (Refer to PSA Test Report No.1)

Ultimate Shear Capacity

20,350 lbs. at 1" Eccentricity (See Graph Above)
Ult. Shear Capacity based on Tests Performed in 6,000 psi
Normal Weight Concrete (Refer to PSA Test Report No. 3)

- Standard Strap Anchor Lengths 6", 8", 10" & 12" Out/Out
- Available Finishes Epoxy or Hot Dipped
 Galvanized. (Stainless Steel available on Special Order)
- Material High Strength weldable grade HRS Steel
- Lock Nut Ensures Positive Connection in Both Directions

in Canada

ACCESSORIES, INC.

7550 North Linder Avenue Skokie, Illinois 60077 USA 705/675-1560 Fax: 708/675-0083

PATON STEENSON ASSOC. INC.

10 Royal Orchard Blvd. P.O. Box #53009 Thornhill, Ontario L3T 7R9 905/889-7357 Fax: 905/889-7648 **DISCLAIMER:** The use of PSA inserts should be approved by a qualified professional engineer or architect.

10 ROYAL ORCHARD BOULEVARD • P.O. BOX 53009 • THORNHILL, ONTARIO L3T 7R9
TEL 905-889-7357 • FAX 905-889-7648

TEST REPORT NO 7

30 KIP LOAD TESTS ON

PSA SLOTTED INSERTS

At Shockey Brothers Plant

MARCH, 1995

ACKNOWLEDGEMENT

Special thanks to NED CLELAND And DAVID RAY of Shockey Brothers, Inc. for their help and advice in making this test program possible.

NOTICE

This publication is intended for the use of professional personnel, competent to evaluate the significance and limitations of its contents and who will accept responsibility for the application of the material it contains. Shockey Brothers, Inc., JVI Accessories, Inc. and Paton Steenson Associates Inc. disclaim any and all responsibility for the application of the stated principles or for the accuracy of the information contained herein.

10 ROYAL ORCHARD BOULEVARD • P.O. BOX 53009 • THORNHILL, ONTARIO £3T 7R9
TEL 905-889-7357 • FAX 905-889-7648

September, 1995

30 KIP LOAD TEST ON PSA SLOTTED INSERTS FOR SHOCKEY BROTHERS

INTRODUCTION

The purpose of this load test program was, (a) to find out if a special high capacity PSA Slotted Insert could achieve an ultimate pull-out capacity of 30 kips, and (b) to test some special ferrule and coil type insert details often used in parking deck "spandrel to column" connections.

TEST PANEL

Two concrete test panels were manufactured at Shockey Brothers plant in Winchester, Virginia on March 10th and 16th respectively as part of a normal day's production. The details of the test panels are shown on Sketch 1 for panel (1) and Sketch 4 for panel (2), included in Appendix A. Load tests were conducted on March 29th, 1995 when the test panels were 13 and 19 days old respectively. The estimated concrete strength for panel (1) was 7,900 psi and for panel (2), 7,000 psi at the time of the test. These values were interpolated from the actual 7, 14, and 28 day cylinder test results for this batch of concrete as shown in Appendix A of this report. The test panels were reinforced to simulate a typical "parking deck" spandrel panel and the inserts were located at the edges to model a typical "spandrel to column" connection. Extra reinforcing steel was provided around and through the legs of the PSA inserts as shown in detail on the test panel sketches and as noted in the table of test results.

TEST METHOD

The test load, in all cases was applied to the inserts through their normal connection devices using a 20 ton hydraulic ram and hand operated pump. The pressure gauge reading was multiplied by the ram area (4.71 sq. in.) to determine the applied load. Recent calibration data for the pressure gauge is included in Appendix A.

Figures 1 and 10 illustrate the test set-up for interior inserts and figures 7 and 12 show the cantilever method used for testing the corner inserts. In all cases a high strength bolt in the load transfer bracket was attached to the heavy duty nut in the insert. All inserts were tested for ultimate pull-out capacity.

A visual inspection of the pattern of failure cracking was made throughout the tests. The mode of failure was determined, photographed and recorded.

September, 1995
Page 2

TEST RESULTS

A table of test results is given in Appendix A

PSA Test Report No. 7

DISCUSSION

- 1. Standard PSA 20 kip (6045) inserts, equipped with special high capacity nuts, were used to achieve the desired 30 kip ultimate capacity. Although the special nuts increased the mechanical capacity of these inserts, it was also necessary to use stepped harpins through the inserts (as shown on the detail sheets in Appendix A), to strengthen the concrete cone and so force a ductile mechanical failure. In Test No. 2, where no extra reinforcement was
- and so force a ductile mechanical failure. In Test No. 2, where no extra reinforcement was provided, the concrete failed at 24,400 lbs as expected. The insert simply behaved like a 20 kip insert. In this case the extra mechanical capacity of the insert forced a concrete failure. This test confirmed the need to provide extra concrete reinforcement wherever the insert is located, in order to achieve a 30 kip ultimate capacity.
- 2. Stepped hairpins were used in all other tests to reinforce the concrete cone areas. Even though these inserts were located near the corners of the panel (to simulate the spandrel panel connection), the hairpins effectively strengthened the concrete cone and so forced a slow ductile mechanical failure of the insert lips at an average capacity of 30 kips.
- 3. Unfortunately the test bolt failed during Test No. 5 which in turn, damaged the threads of the insert nut. Even so a load of 27,700 lbs was reached. The insert was re-tested using a new bolt but the damaged nut failed at 26,800 lbs.
- 4. The traditional 1" dia. coil/plate type inserts performed very well. In the special Shockey detail (Tests A and D), one of the four struts is cut short and the threaded coil wrapped with pipe insulation. This detail, P8791PA is included in Appendix A. The insulation is intended to relieve any minor misalignment between the threaded rod and the insert. Tests have shown that the capacity of an insert is substantially reduced if the load is **not** applied perpendicular to the insert. This detail requires very close construction tolerances.
- perpendicular to the insert. This detail requires very close construction tolerances.

 The use of a slotted insert in the "spandrel-to-column" parking deck connection would provide more construction tolerance, and so ensure that the load is applied perpendicular to the insert.
- provide more construction tolerance, and so ensure that the load is applied perpendicular to the insert.
 5. The other Shockey detail (Tests B & C) using a heavy hex nut welded to a 1/2" plate does not provide any construction tolerance for misalignment. This detail, P8341PB is included in Appendix A. The capacity of this connection detail was adequate without extra

reinforcement when located in the corner (Test B).

reinforcement when located away from an edge (Test C), but requires additional heavy

PSA Test Report No. 7 September, 1995 Page 3

2.

CONCLUSIONS AND RECOMMENDATIONS

1. The PSA 6045 slotted insert when equipped with a special high capacity nut, has a mechanical capacity of approximately 30,000 lbs.

This insert has an ultimate pull-out capacity of approximately 30,000 lbs. when reinforced

- with two stepped hairpins or similar reinforcing steel embedded in 7000 psi concrete, even when the insert is located near the corner of the panel.
 The ultimate capacity of this insert without stepped hairpin type reinforcement is limited
- to 24,000 lbs. in 7000 psi concrete, when the insert is located well away from the corner or edges of a panel.
 4. Straight reinforcing steel around or through the shear cone does not increase the ultimate
- capacity of the shear cone.

 5. Stepped hairpins (#3 weldable grade) or similar reinforcing bars can effectively increase

the capacity of the shear cone, even at the corner of a panel.

- 6. The insulated coil/plate type anchorages performed well above the design ultimate capacity of these anchorages.
- 7. Additional heavy hairpin or stepped hairpin reinforcing steel is needed when these coil/plate type anchorages are located at or near the corner of a panel.

PATON STEENSON ASSOCIATES INC

W. D. Paton, P. Eng

PSA Test Report No. 7 September, 1995 Page 4

APPENDIX - A

- 1. Table of Test Results
- 2. Concrete Strength Graph
- 3. Calibration Data
- 4. Photographs Figs. 1 through 9
- 5. Fig. 10 Test Set-Up for Edge Tests
- 6. Fig. 11 Test Set-Up for Pull-Out Tests
- 7. Sketch-1 Test Panel No. 1
- 8. Sketch-2 Hairpin Reinforcement 1
- 9. Sketch-3 Hairpin Reinforcement 2
- 10. Sketch-4 Test Panel No. 2
- 11. Shockey Detail P9603GA Plate c/w HA Studs
- 12. Shockey Detail P8341PB Plate c/w HH Nut
- 13. Shockey Detail P8791PA 1" 4 Strut Coil c/w Insul.
- 14. Test Block Detail High Concrete Sleeve

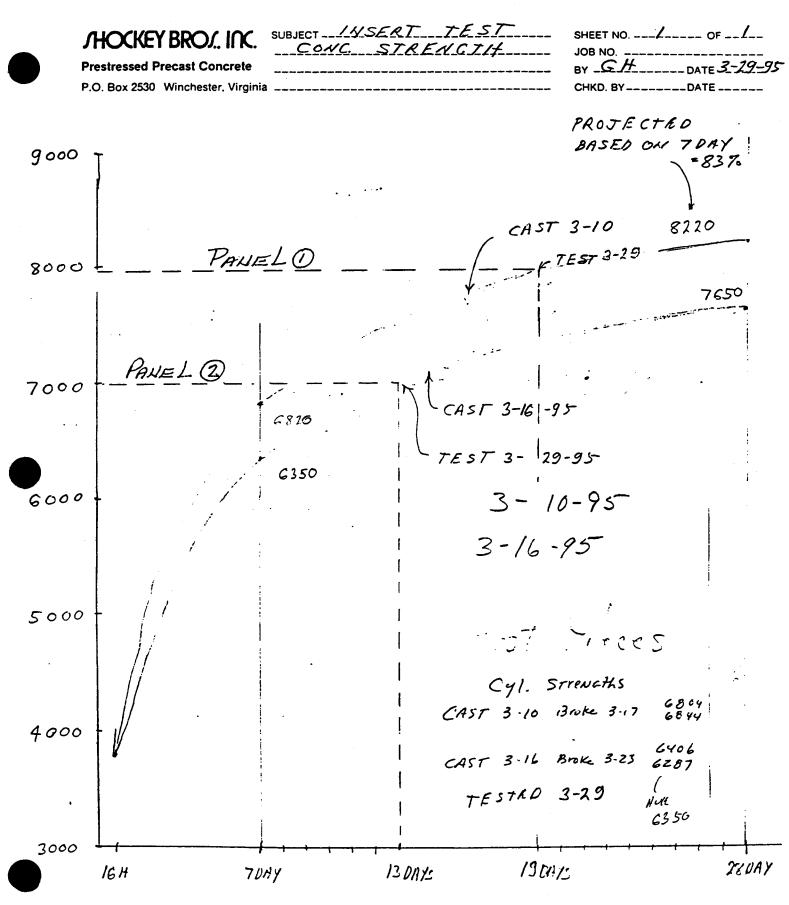
TEST RESULTS

				March, 1995	, 1995		
INSERT	TEST	INSERT	REINFORCEMENT (In addition to	FAILURE LOAD	E LOAD	TVPE OF	
TYPE	NUMBER	LOCATION	normal panel reinforcement)	Gage (psi)	Lbs.	FAILURE	COMMENTS
PSA 6045 HC	2	Interior	None	5,200	24,400	Slow ductile concrete failure	Lack of stepped hairpins forced a concrete failure. Same as a 20 kip insert.
PSA 6045 HC	æ	Comer	2 - Stepped hairpins. 1 - #8 Flat hairpin.	6,500	30,600	Slow ductile failure. Concrete cracked, and lips yielded.	Insert deformed - edge concrete cracked which reduced confinement of insert. The nut then caused lips to fail.
PSA 6045 HC		Comer	2 - Stepped hairpins only	NIL	NIL	Not Tested	Concrete around sample was damaged by Test No. 2
PSA 6045 HC	4	Corner	2 - Stepped hairpins. 1 - #8 Flat hairpin.	6,250	29,400	Slow ductile failure. Concrete cracked, and lips yielded.	Same as Test No. 3
PSA 6045 HC	5	Corner	2 - Stepped hairpins only	5,900	27,700	Stripped the threads of the test bolt.	Threads of nut weakened by failed bolt. Retested - but nut failed at 26,800 lbs.
Shockey P9603PA	٧	Corner	1" dia.coil insert. c/w pipe insulation. 1/2 x 6 x 6 plate 4 - 1/2 x 6 HA Studs 2- #4 & 1-#8 Hairpin	8,000	37,700	No Failure	Test stopped at jack capacity (20 tons). No distress of either concrete or insert.
Shockey P8341 PB	В	Corner	3/4" HH Nut welded to 1/2 x 6 x 6 plate. No pipe insulation. 4 - 1/2 x 5 HA Studs 2 - #3 Hairpins	6,800	32,000	Slow ductile concrete failure.	No pipe insulation to absorb any load misalignment.
Shockey P8341 PB	ပ	Interior	Same as B (except no hairpins)	8,100	38,500	No Faiture	Test stopped at jack capacity (20 tons)
Shockey P8791PA	Q	Corner	1" dia coil insert c/w pipe insulation. 1/2 x 6 x 6 plate. 2 - 1/2 x 6 HA Studs. 2-#4 L & 1 #8 H'pin	7,500	35,300	No Failure	Damaged test beam. (Bent bottom flange) Test was stopped. No distress of sample.

Washers held load up to 20 kips. Then kept yielding as load was increased.

Washers yielded (dished)

37,700


8,000

N/A

Special

Test Blk.

High Concrete Sleeve 3 Standard Washers 3/4, 1 1/8, 1 3/8.

Calibration Test Certificate

Customer: Paton Steenson Associates

Gauge Description: Enerpac Gauge 0-10,000 psi, serial G93-496

Standard Used: Mansfield & Green, Type #R-50

1315 Dead Weight Serial #: Dead Weight Accuracy: 0.1%

**Note: Instruments have been tested against a dead weight tester serial # as above, which is traceable to the National Research Council in Ottawa, as per their report # 722.0329, dated August 18,1989.

Hydraquip Sales & Service Ltd. certifies that the below item(s) have been tested to comply in every way with the requirements of the above purchase order.

Master Test Gauge Above Gauge

D.W.

1000 PSI 1000 PSI 3000 3000

5000 5000

7000 7025 9025 9000

Date Tested: Dec 6, 1993

Technician: Pat Mahon

Phone 416-461-3573 Fax 416-461-2979 Out of town callers 1-800-463-4168

Fig. 1 Test Set-Up for Interior Test - (Test No. 2)

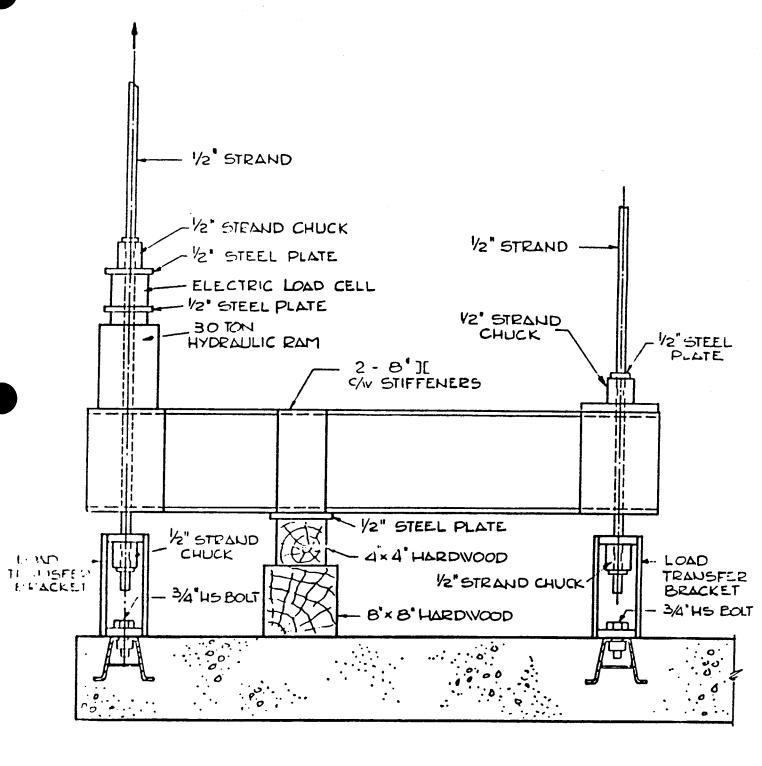
Fig. 2 Test No. 2 - (24,400 Lbs.) No stepped hairpins

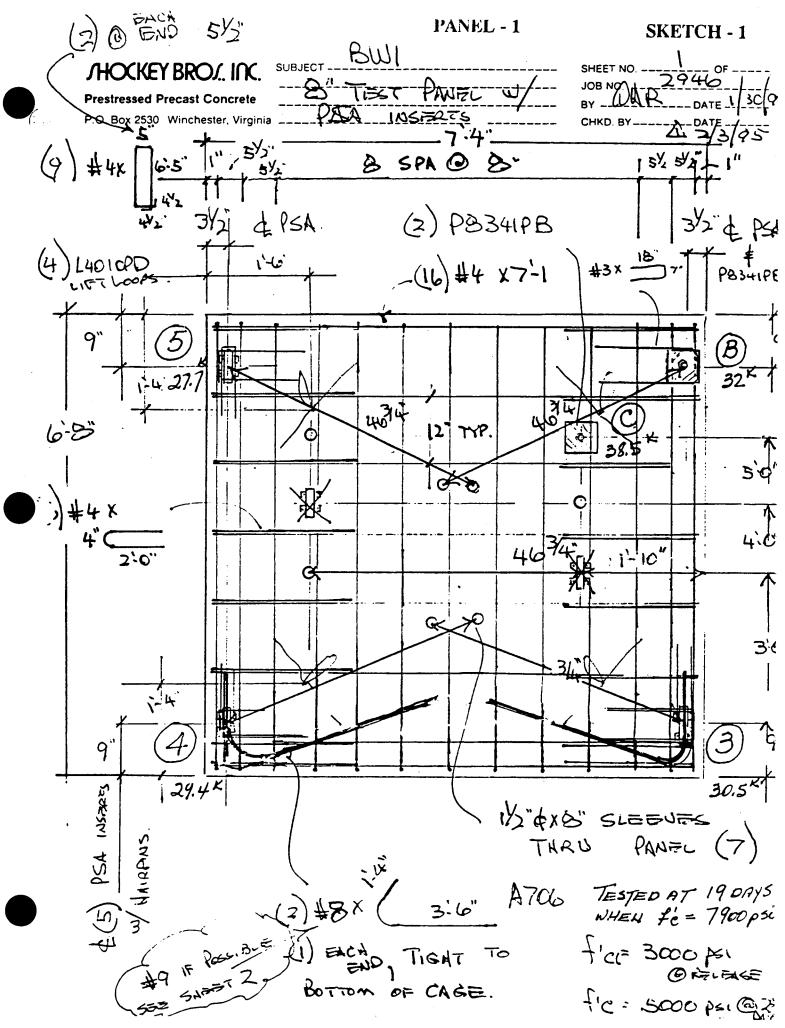
Fig. 3 Test No. 3 - (30,600 Lbs.) Corner with 2 Hairpins

Fig. 4 Test No. 5 - Test Bolt Threads stripped at 27,700 Lbs.

Fig. 5 Test No. B - 3/4" Ferrule at Corner - Concrete failed at 32,000 Lbs.

Fig. 6 Test Block with Plastic Connector Sleeve (High Concrete Accessories)


Fig. 7 Test Set-Up for Corner Test


Fig. 8 Test No. 4 - (29,400 Lbs.) Corner Test with 2 Hairpins

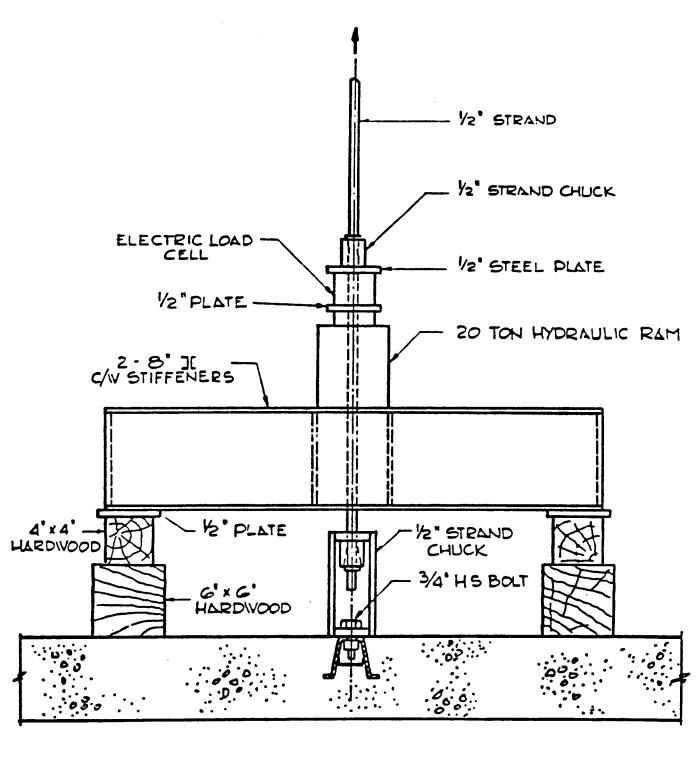


Fig. 9 Connector Sleeve - Column to Spandrel (High Concrete Accessories)

TEST SET-UP
FOR EDGE TESTS

TEST SET-UP
FOR PULLOUT TESTS

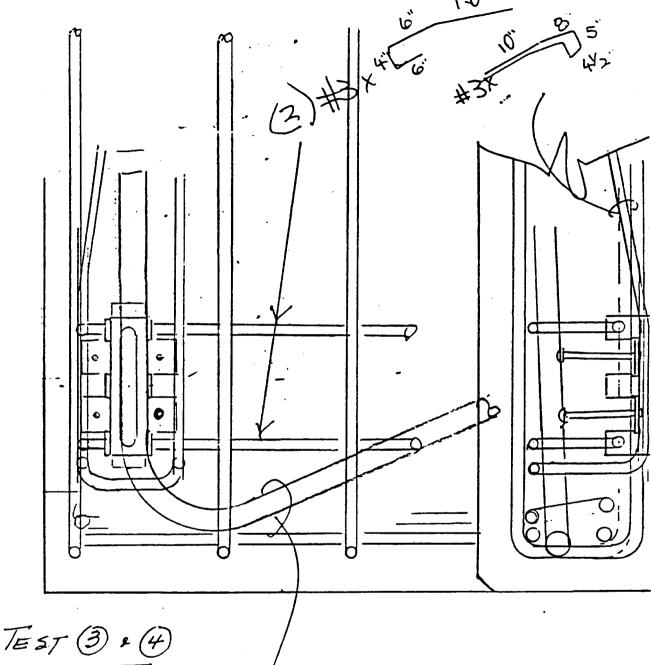
FIG. 11

/HOCKEY BRO/, INC.

Prestressed Precast Concrete

P.O. Box 2530 Winchester, Virginia

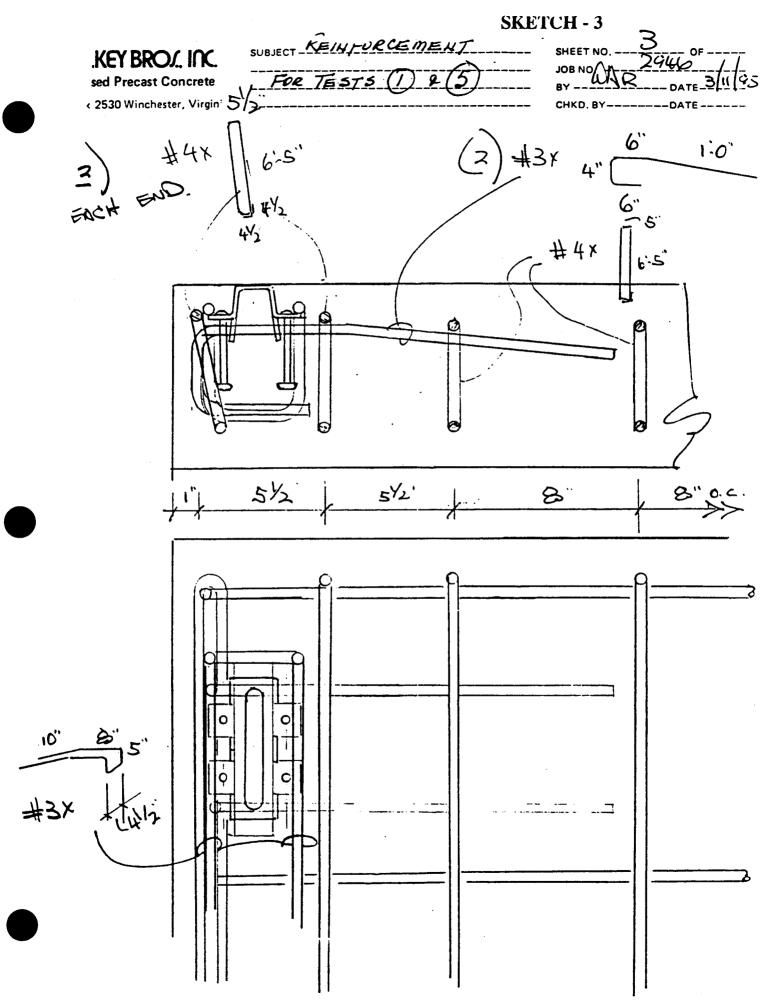
SUBJECT REINFORCEMENT

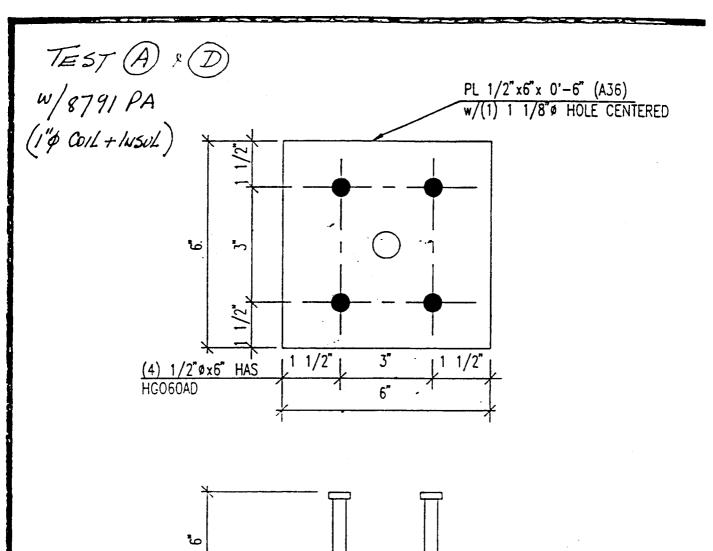

FOR TESTS (3) & (4)

SKETCH - 2

SHEET NO. 2940 OF

JOB NO. 2940


BY DATE 3


8 X ; ii 6 G2 60 G2 60

N54571 200

(#9 IF BEND & CAN BE HELD)

ا

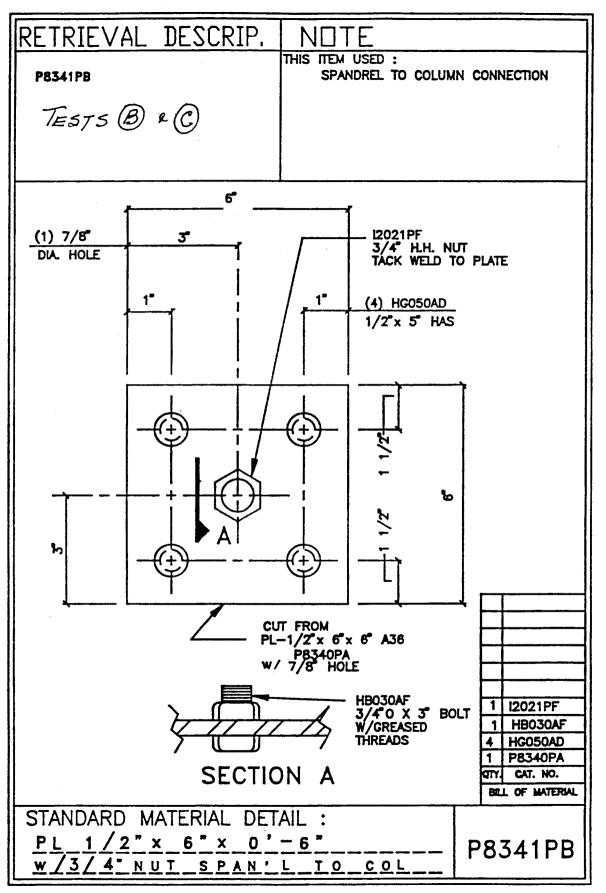
JOB NO. 2938-1245 NOTES: NUMBER REQ'D. THESE DOCUMENTS-SHOP DRAWINGS, PLANS, SPECIFICATIONS ARE THE PROPERTY OF P9603GA SHOCKEY BROS., INC. AND MAY NOT BE USED, REPRODUCED OR UTILIZED WITHOUT 390 APPROVED BY DRAWN BY THE EXPRESS WRITTEN CONSENT OF 8-12-94 SHOCKEY BROS., INC. G H **JBS** A Hard Hat RFA & PFA PANELS WHERE USED SHOCKEY BROS., INC. to Topi REVISED P.O. BOX 2530 703-667-7700

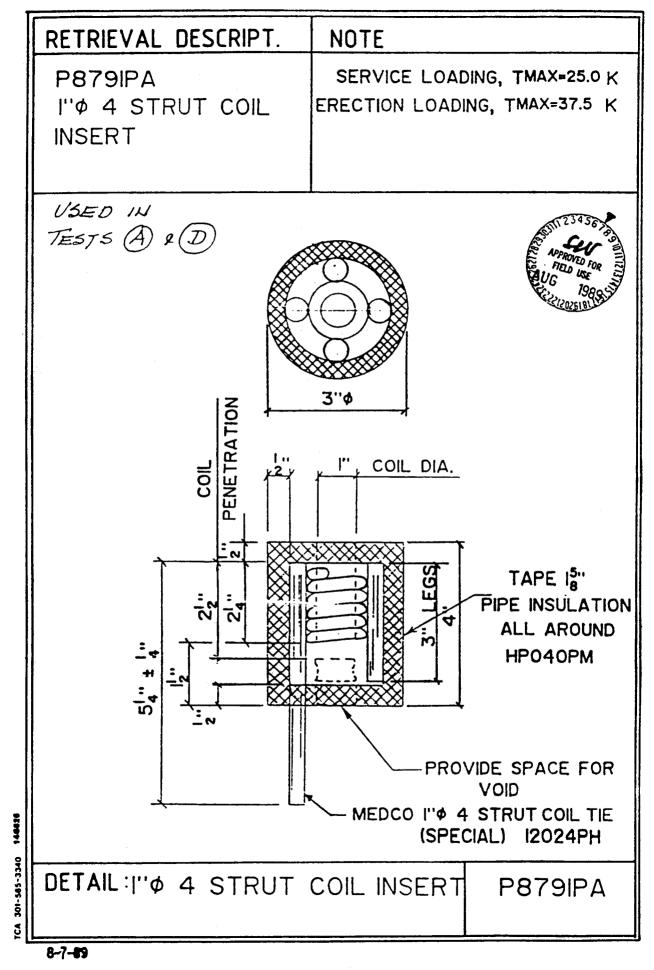
WINCHESTER, VA.

22604

CHECKED BY

GH


DATE


12

8/4/94

CIRCLE

ONE

HOCKEY BROS. INC. Prestressed Precast Concrete P.O. Box 2530 Winchester, Virginia	SUBJECT BWI	SHEET NOOF
LOAD TEST	MOCKUP	UNITS
COLUMN	SLEEUE	ANCHORAGE LOAD TIST.
		HIGH CONCRETE CONNECTOR SLEEUE